Skip to main content

Advertisement

Log in

Immunohistochemical evaluation and prognostic value of monocarboxylate transporter 1 (MCT1) and 4 (MCT4) in T-cell non-Hodgkin lymphoma

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Tumor cells often exhibit the Warburg effect, wherein, they preferentially undergo glycolysis over oxidative phosphorylation for energy production. Monocarboxylate transporter 1 (MCT1) and 4 (MCT4) are critical symporters mediating lactate efflux and preventing intracellular acidification during tumor growth. Numerous studies have focused on inhibiting MCT1 or MCT4 in various cancers. However, its role in T-cell lymphoma (TCL) is not yet investigated owing to the low incidence of TCL. This study was designed to investigate the expression of MCT1/MCT4 in patients with TCL and determine their prognostic value in this cancer. We performed immunohistochemistry to evaluate the expression level of MCT1/MCT4 in 38 TCL tissue samples and then compared their expression among different TCL subgroups, which were formed based on different clinical characteristics. Survival analysis was performed to evaluate the relationship between MCT1/MCT4 expression and both overall survival (OS) and progression-free survival (PFS). Our results revealed that MCT1 and MCT4 expression was significantly increased in TCL tissues compared to the control group. In addition, increased MCT1 expression associated with the female sex, advanced disease stage, increased serum LDH, Ki-67 at ≥ 50%, and intermediate or high-risk groups as categorized by the International Prognostic Index (IPI) score. We also found that increased MCT1 expression may be associated with reduced OS and PFS. In conclusion, MCT1 and MCT4 are overexpressed in patients with TCL and may predict poor prognosis. MCT1 inhibition might be a novel treatment strategy for TCL, and further preclinical trials are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data from this study are available from the corresponding author upon reasonable request.

References

  1. Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26(25):4124–30.

    Article  PubMed  Google Scholar 

  2. Perry A, Diebold J, Nathwani B, et al. Non-Hodgkin lymphoma in the developing world: review of 4539 cases from the International Non-Hodgkin Lymphoma Classification Project. Haematologica. 2016;101(10):1244–50.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Perry A, Diebold J, Nathwani B, et al. Non-Hodgkin lymphoma in the far east: review of 730 cases from the international non-Hodgkin lymphoma classification project. Ann Hematol. 2016;95(2):245–51.

    Article  PubMed  Google Scholar 

  4. Sun J, Yang Q, Lu Z, et al. Distribution of lymphoid neoplasms in China: analysis of 4,638 cases according to the World Health Organization classification. Am J Clin Pathol. 2012;138(3):429–34.

    Article  PubMed  Google Scholar 

  5. Swerdlow S, Campo E, Pileri S, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Briski R, Feldman A, Bailey N, et al. The role of front-line anthracycline-containing chemotherapy regimens in peripheral T-cell lymphomas. Blood Cancer J. 2014;4:e214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abouyabis A, Shenoy P, Sinha R, Flowers C, Lechowicz M. A Systematic review and meta-analysis of front-line anthracycline-based chemotherapy regimens for peripheral T-cell Lymphoma. ISRN Hematol. 2011;2011:623924.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mak V, Hamm J, Chhanabhai M, et al. Survival of patients with peripheral T-cell lymphoma after first relapse or progression: spectrum of disease and rare long-term survivors. J Clin Oncol. 2013;31(16):1970–6.

    Article  CAS  PubMed  Google Scholar 

  9. Kim S, Yoon S, Suzuki R, et al. Comparison of outcomes between autologous and allogeneic hematopoietic stem cell transplantation for peripheral T-cell lymphomas with central review of pathology. Leukemia. 2013;27(6):1394–7.

    Article  CAS  PubMed  Google Scholar 

  10. Warburg Otto. On the origin of cancer cells. Science. 1956;123(3191):309–14. https://doi.org/10.1126/science.123.3191.309.

    Article  CAS  PubMed  Google Scholar 

  11. Lunt S, Vander HM. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Bi. 2011;27:441–64.

    Article  CAS  Google Scholar 

  12. Halestrap A. The monocarboxylate transporter family–Structure and functional characterization. IUBMB Life. 2012;64(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  13. Halestrap A, Wilson M. The monocarboxylate transporter family–role and regulation. IUBMB Life. 2012;64(2):109–19.

    Article  CAS  PubMed  Google Scholar 

  14. Pérez-Escuredo J, Van Hée V, Sboarina M, et al. Monocarboxylate transporters in the brain and in cancer. Biochim Biophys Acta. 2016;1863(10):2481–97.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pinheiro C, Longatto-Filho A, Ferreira L, et al. Increasing expression of monocarboxylate transporters 1 and 4 along progression to invasive cervical carcinoma. Int J Gynecol Pathol. 2008;27(4):568–74.

    Article  PubMed  Google Scholar 

  16. Ho J, de Moura M, Lin Y, et al. Importance of glycolysis and oxidative phosphorylation in advanced melanoma. Mol Cancer. 2012;11:76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sonveaux P, Végran F, Schroeder T, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. 2008;118(12):3930–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Semenza G. Tumor metabolism: cancer cells give and take lactate. J Clin Invest. 2008;118(12):3835–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bola B, Chadwick A, Michopoulos F, et al. Inhibition of monocarboxylate transporter-1 (MCT1) by AZD3965 enhances radiosensitivity by reducing lactate transport. Mol Cancer Ther. 2014;13(12):2805–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beloueche-Babari M, Wantuch S, Casals Galobart T, et al. MCT1 inhibitor AZD3965 increases mitochondrial metabolism, facilitating combination therapy and noninvasive magnetic resonance spectroscopy. Cancer Res. 2017;77(21):5913–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Curtis N, Mooney L, Hopcroft L, et al. Pre-clinical pharmacology of AZD3965, a selective inhibitor of MCT1: DLBCL, NHL and Burkitt’s lymphoma anti-tumor activity. Oncotarget. 2017;8(41):69219–36.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Braga M, Kaliszczak M, Carroll L, et al. Tracing nutrient flux following monocarboxylate transporter-1 inhibition with AZD3965. Cancers. 2020;12(6):1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beloueche-Babari M, Casals Galobart T, Delgado-Goni T, et al. Monocarboxylate transporter 1 blockade with AZD3965 inhibits lipid biosynthesis and increases tumour immune cell infiltration. Brit J Cancer. 2020;122(6):895–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Noble R, Bell N, Blair H, et al. Inhibition of monocarboxyate transporter 1 by AZD3965 as a novel therapeutic approach for diffuse large B-cell lymphoma and Burkitt lymphoma. Haematologica. 2017;102(7):1247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Afonso J, Pinto T, Simões-Sousa S, et al. Clinical significance of metabolism-related biomarkers in non-Hodgkin lymphoma - MCT1 as potential target in diffuse large B cell lymphoma. Cell Oncol. 2019;42(3):303–18.

    Article  CAS  Google Scholar 

  26. Ghandi M, Huang F, Jané-Valbuena J, et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature. 2019;569(7757):503–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheson B, Fisher R, Barrington S, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gao S, Zhang T, Jin L, et al. CAPON is a critical protein in synaptic molecular networks in the prefrontal cortex of mood disorder patients and contributes to depression-like behavior in a mouse model. Cereb Cortex. 2019;29(9):3752–65.

    Article  PubMed  Google Scholar 

  29. Foss FM, Zinzani PL, Vose JM, Gascoyne RD, Rosen ST, Tobinai K. Peripheral T-cell lymphoma. Blood. 2011;117(25):6756–67.

    Article  CAS  PubMed  Google Scholar 

  30. Pizzi M, Margolskee E, Inghirami G. Pathogenesis of peripheral T Cell lymphoma. Annu Rev Pathol. 2018;13:293–320.

    Article  CAS  PubMed  Google Scholar 

  31. Casulo C, O’Connor O, Shustov A, et al. T-Cell Lymphoma: Recent Advances in Characterization and New Opportunities for Treatment. J Natl Cancer Inst. 2017;109(2):248.

    Article  Google Scholar 

  32. Phan A, Veldman R, Lechowicz MJ. T-cell lymphoma epidemiology: the known and unknown. Curr Hematol Malig Rep. 2016;11(6):492–503.

    Article  PubMed  Google Scholar 

  33. Izykowska K, Rassek K, Korsak D, Przybylski GK. Novel targeted therapies of T cell lymphomas. J Hematol Oncol. 2020;13(1):176.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ito Y, Makita S, Tobinai K. Development of new agents for peripheral T-cell lymphoma. Expert Opin Biol Ther. 2019;19(3):197–209.

    Article  CAS  PubMed  Google Scholar 

  35. Sborov D, Canella A, Hade E, et al. A phase 1 trial of the HDAC inhibitor AR-42 in patients with multiple myeloma and T- and B-cell lymphomas. Leukemia Lymphoma. 2017;58(10):2310–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bagot M, Porcu P, Marie-Cardine A, et al. IPH4102, a first-in-class anti-KIR3DL2 monoclonal antibody, in patients with relapsed or refractory cutaneous T-cell lymphoma: an international, first-in-human, open-label, phase 1 trial. Lancet Oncol. 2019;20(8):1160–70.

    Article  CAS  PubMed  Google Scholar 

  37. Ansell S, Maris M, Lesokhin A, et al. Phase I study of the CD47 blocker TTI-621 in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 2021;27(8):2190–9.

    Article  CAS  PubMed  Google Scholar 

  38. Rothe A, Sasse S, Topp M, et al. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2015;125(26):4024–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Seto A, Beatty X, Lynch J, et al. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Brit J Haematol. 2018;183(3):428–44.

    Article  CAS  Google Scholar 

  40. Kawai H, Ando K, Maruyama D, et al. Phase II study of E7777 in Japanese patients with relapsed/refractory peripheral and cutaneous T-cell lymphoma. Cancer Sci. 2021;112(6):2426–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pusalkar S, Zhou X, Li Y, et al. Biotransformation pathways and metabolite profiles of oral [C]Alisertib (MLN8237), an investigational aurora a kinase inhibitor, in patients with advanced solid tumors. Drug Metab Dispos. 2020;48(3):217–29.

    Article  CAS  PubMed  Google Scholar 

  42. Lindahl L, Willerslev-Olsen A, Gjerdrum L, et al. Antibiotics inhibit tumor and disease activity in cutaneous T-cell lymphoma. Blood. 2019;134(13):1072–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Payen V, Mina E, Van Hée V, Porporato P, Sonveaux P. Monocarboxylate transporters in cancer. Mol Metab. 2020;33:48–66.

    Article  CAS  PubMed  Google Scholar 

  44. Doherty J, Yang C, Scott K, et al. Blocking lactate export by inhibiting the Myc target MCT1 Disables glycolysis and glutathione synthesis. Cancer Res. 2014;74(3):908–20.

    Article  CAS  PubMed  Google Scholar 

  45. Baek G, Tse Y, Hu Z, et al. MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies. Cell Rep. 2014;9(6):2233–49.

    Article  CAS  PubMed  Google Scholar 

  46. Pértega-Gomes N, Vizcaíno J, Miranda-Gonçalves V, et al. Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer. BMC Cancer. 2011;11:312.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pinheiro C, Reis R, Ricardo S, Longatto-Filho A, Schmitt F, Baltazar F. Expression of monocarboxylate transporters 1, 2, and 4 in human tumours and their association with CD147 and CD44. J Biomed Biotechnol. 2010;2010:427694.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pinheiro C, Albergaria A, Paredes J, et al. Monocarboxylate transporter 1 is up-regulated in basal-like breast carcinoma. Histopathology. 2010;56(7):860–7.

    Article  PubMed  Google Scholar 

  49. Miranda-Gonçalves V, Honavar M, Pinheiro C, et al. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro Oncol. 2013;15(2):172–88.

    Article  PubMed  Google Scholar 

  50. Zhao Z, Wu M, Zou C, et al. Downregulation of MCT1 inhibits tumor growth, metastasis and enhances chemotherapeutic efficacy in osteosarcoma through regulation of the NF-κB pathway. Cancer Lett. 2014;342(1):150–8.

    Article  CAS  PubMed  Google Scholar 

  51. Leu M, Kitz J, Pilavakis Y, et al. Monocarboxylate transporter-1 (MCT1) protein expression in head and neck cancer affects clinical outcome. Sci Rep-UK. 2021;11(1):4578.

    Article  CAS  Google Scholar 

  52. Ruan Y, Zeng F, Cheng Z, Zhao X, Fu P, Chen H. High expression of monocarboxylate transporter 4 predicts poor prognosis in patients with lung adenocarcinoma. Oncol Lett. 2017;14(5):5727–34.

    PubMed  PubMed Central  Google Scholar 

  53. Kuo T, Huang K, Yang S, et al. Monocarboxylate Transporter 4 Is a Therapeutic Target in Non-small Cell Lung Cancer with Aerobic Glycolysis Preference. Mol Ther-Oncolytics. 2020;18:189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. International_Non-Hodgkin's_Lymphoma_Prognostic_Factors_Project. A predictive model for aggressive non-Hodgkin's lymphoma. N Engl J Med. 1993;329(14):987-94.

  55. Szczuraszek K, Mazur G, Jeleń M, Dziegiel P, Surowiak P, Zabel M. Prognostic significance of Ki-67 antigen expression in non-Hodgkin’s lymphomas. Anticancer Res. 2008;28:1113–8.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank their colleagues in the Hematology Laboratory at The Affiliated Zhuzhou Hospital, XiangYa School of Medicine, Central South University, for their advice and assistance during these studies.

Funding

This study was supported by Hunan Provincial Science and Technology Department, China.

Author information

Authors and Affiliations

Authors

Contributions

HZ drafted the manuscript; HZ, GH, and YL were responsible for conceiving the study; HZ, YC, QY, JL, YX, and HC analyzed and interpreted the data; HZ performed the immunohistochemical staining and evaluations; ZC, LY, and HC managed and followed up the patients; GH, YL, and YC made various critical revisions to the manuscript; GH, YC, and YL contributed to study design; HZ conceived the original idea and GH supervised the project. All authors approved the final version of the manuscript prior to submission.

Corresponding author

Correspondence to Guo-Yu Hu.

Ethics declarations

Conflict of interests

There are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Chen, Y., Liao, YP. et al. Immunohistochemical evaluation and prognostic value of monocarboxylate transporter 1 (MCT1) and 4 (MCT4) in T-cell non-Hodgkin lymphoma. Clin Exp Med 23, 55–64 (2023). https://doi.org/10.1007/s10238-022-00805-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-022-00805-4

Keywords

Navigation