Skip to main content

Advertisement

Log in

Clinical significance of circulating tumor cells from lung cancer patients using microfluidic chip

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Circulating tumor cells (CTCs) exist in the peripheral blood and have an important role in the disease development, tumor metastasis and clinical surveillance, especially in the process of metastasis. However, the technology of detecting CTCs still had a large challenge since they were rare in the peripheral blood. Here, we developed a size-based microfluidic chip, which contained array and filter channel array that could enrich CTCs from blood samples more quickly and conveniently. Combined with clinical specimen, we analyzed CTCs in 200 lung cancer patients by this microfluidic chip. The microfluidic device has high specificity and sensitivity in detecting CTCs (86.0% sensitivity and 98% specificity). Furthermore, the number of CTCs showed a increasing trend according to the stage of the disease (the mean number of I stage 5.0 ± 5.121 versus II stage 8.731 ± 6.36 versus III stage 16.81 ± 9.556 versus IV stage 28.72 ± 17.39 cells/mL, P < 0.05). The number of CTCs was concurrent with the condition of pathological type and metastasis patients. Compared to conventional markers like CEA, CY211, SCC, CTCs showed a higher positive rate in diagnosed patients. The advanced microfluidic device could capture tumor cells without reliance on cell surface expression markers and provide a fast, convenient, economical method in detecting CTCs, thereby offering potential to design effective and individualized cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Punnoose EA, Atwal S, Liu W, et al. Evaluation of circulating tumor cells and circulating tumor DNA in non-small cell lung cancer: association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib. Clin Cancer Res. 2012;18:2391–401. https://doi.org/10.1158/1078-0432.CCR-11-3148.

    Article  CAS  PubMed  Google Scholar 

  2. Cheng M, Liu L, Yang HS, Liu GF. Circulating tumor cells are associated with bone metastasis of lung cancer. Asian Pac J Cancer Prev. 2014;15:6369–74.

    Article  PubMed  Google Scholar 

  3. Pesta M, Kulda V, Narsanska A, Fichtl J, Topolcan O. May CTC technologies promote better cancer management? EPMA J. 2015;6:1. https://doi.org/10.1186/s13167-014-0023-x (eCollection 2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Parkinson DR, Dracopoli N, Petty BG, Compton C, Cristofanilli M, Deisseroth A. Considerations in the development of circulating tumor cell technology for clinical use. J Transl Med. 2012;10:138. https://doi.org/10.1186/1479-5876-10-138.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Seo H, Hwang Y, Choe K, Kim P. In vivo quantitation of injected circulating tumor cells from great saphenous vein based on video-rate confocal microscopy. Biomed Opt Express. 2015;6:2158–67. https://doi.org/10.1364/BOE.6.002158.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hoffman RM. Orthotopic mouse models of tumor metastasis expressing fluorescent reporters produce imageable circulating tumor cells. Cancer Microenviron. 2014;7:133–8. https://doi.org/10.1007/s12307-014-0154-6 (Epub 2014 Nov 23).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li J, Sharkey CC, Huang D, King MR. Nanobiotechnology for the therapeutic targeting of cancer cells in blood. Cell Mol Bioeng. 2015;8:137–50.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Low WS, Wan Abas WA. Benchtop technologies for circulating tumor cells separation based on biophysical properties. Biomed Res Int. 2015;2015:239362. https://doi.org/10.1155/2015/239362.

    PubMed  PubMed Central  Google Scholar 

  9. Nicolazzo C, Gradilone A. Significance of circulating tumor cells in soft tissue sarcoma. Anal Cell Pathol (Amst). 2015;2015:697395. https://doi.org/10.1155/2015/697395.

    Google Scholar 

  10. Gorges TM, Tinhofer I, Drosch M, Rose L, Zollner TM, Krahn T. Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer. 2012;12:178. https://doi.org/10.1186/1471-2407-12-178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nora Dickson M, Tsinberg P, Tang Z, Bischoff FZ, Wilson T, Leonard EF. Efficient capture of circulating tumor cells with a novel immunocytochemical microfluidic device. Biomicrofluidics. 2011;5:34119–3411915. https://doi.org/10.1063/1.3623748.

    Article  PubMed  Google Scholar 

  12. Huang T, Jia CP, Jun Y, et al. Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip. Biosens Bioelectron. 2014;51:213–8. https://doi.org/10.1016/j.bios.2013.07.044.

    Article  CAS  PubMed  Google Scholar 

  13. Gao Y, Zhu Y, Zhang Z, Zhang C, Huang X, Yuan Z. Clinical significance of pancreatic circulating tumor cells using combined negative enrichment and immunostaining-fluorescence in situ hybridization. J Exp Clin Cancer Res. 2016;35:66. https://doi.org/10.1186/s13046-016-0340-0.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ashworth TR. A case of cancer in which cells similar to those in thetumors were seen in the blood after death. Aust Med. 1869;14:146–7.

    Google Scholar 

  15. Tseng JY, Yang CY, Liang SC, Liu RS, Jiang JK, Lin CH. Dynamic changes in numbers and properties of circulating tumor cells and their potential applications. Cancers (Basel). 2014;6:2369–86. https://doi.org/10.3390/cancers6042369.

    Article  Google Scholar 

  16. Hyun KA, Koo GB, Han H, et al. Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer. Oncotarget. 2016;7:24677–87. https://doi.org/10.18632/oncotarget.8250.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hofman VJ, Ilie MI, Bonnetaud C, Selva E, Long E, Molina T. Cytopathologic detection of circulating tumor cells using the isolation by size of epithelial tumor cell method: promises and pitfalls. Am J Clin Pathol. 2011;135:146–56. https://doi.org/10.1309/AJCP9X8OZBEIQVVI.

    Article  PubMed  Google Scholar 

  18. Li Q, Qi H, Zhou HX, Deng CY, Zhu H, Li JF. Detection of micrometastases in peripheral blood of non-small cell lung cancer with a refined immunomagnetic nanoparticle enrichment assay. Int J Nanomedicine. 2011;6:2175–81. https://doi.org/10.2147/IJN.S24731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Neves RP, Raba K, Schmidt O, et al. Genomic high-resolution profiling of single CKpos/CD45neg flow-sorting purified circulating tumor cells from patients with metastatic breast cancer. Clin Chem. 2014;60:1290–7. https://doi.org/10.1373/clinchem.2014.222331.

    CAS  PubMed  Google Scholar 

  20. Fan X, Jia C, Yang J, Li G, Mao H, Jin Q. A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells. Biosens Bioelectron. 2015;71:380–6. https://doi.org/10.1016/j.bios.2015.04.080.

    Article  CAS  PubMed  Google Scholar 

  21. Todenhofer T, Park ES, Duffy S, Deng X, Jin C, Abdi H. Microfluidic enrichment of circulating tumor cells in patients with clinically localized prostate cancer. Urol Oncol. 2016;34:483e489. https://doi.org/10.1016/j.urolonc.2016.06.004.

    Article  Google Scholar 

  22. Chen YY, Xu GB. Effect of circulating tumor cells combined with negative enrichment and CD45-FISH identification in diagnosis, therapy monitoring and prognosis of primary lung cancer. Med Oncol. 2014;31:240. https://doi.org/10.1007/s12032-014-0240-0.

    Article  PubMed  Google Scholar 

  23. Truini A, Alama A, Dal Bello MG, et al. Clinical applications of circulating tumor cells in lung cancer patients by cell search system. Front Oncol. 2014;4:242. https://doi.org/10.3389/fonc.2014.00242.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wan JW, Gao MZ, Hu RJ, Huang HY, Wei YY, Han ZJ. A preliminary study on the relationship between circulating tumor cells count and clinical features in patients with non-small cell lung cancer. Ann Transl Med. 2015;3:352. https://doi.org/10.3978/j.issn.2305-5839.2015.11.18.

    PubMed  PubMed Central  Google Scholar 

  25. Wu C, Hao H, Li L, Zhou X, Guo Z, Zhang L, et al. Preliminary investigation of the clinical significance of detecting circulating tumor cells enriched from lung cancer patients. J Thorac Oncol. 2009;4:30–6. https://doi.org/10.1097/JTO.0b013e3181914125.

    Article  PubMed  Google Scholar 

  26. Reddy RM, Murlidhar V, Zhao L, et al. Pulmonary venous blood sampling significantly increases the yield of circulating tumor cells in early-stage lung cancer. J Thorac Cardiovasc Surg. 2016;151:852–7. https://doi.org/10.1016/j.jtcvs.2015.09.126.

    Article  PubMed  Google Scholar 

  27. Went PT, Lugli A, Meier S, Bundi M, Mirlacher M, Sauter G. Frequent EpCam protein expression in human carcinomas. Hum Pathol. 2004;35:122–8.

    Article  CAS  PubMed  Google Scholar 

  28. Kim TH, Yoon HJ, Stella P, Nagrath S. Cascaded spiral microfluidic device for deterministic and high purity continuous separation of circulating tumor cells. Biomicrofluidics. 2014;8:064117. https://doi.org/10.1063/1.4903501.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Maremanda NG, Roy K, Kanwar RK, Shyamsundar V, Ramshankar V, Krishnamurthy A. Quick chip assay using locked nucleic acid modified epithelial cell adhesion molecule and nucleolin aptamers for the capture of circulating tumor cells. Biomicrofluidics. 2015;9:054110.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Karabacak NM, Spuhler PS, Fachin F, et al. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc. 2014;9:694–710. https://doi.org/10.1038/nprot.2014.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dorsey JF, Kao GD, MacArthur KM, et al. Tracking viable circulating tumor cells (CTCs) in the peripheral blood of non-small cell lung cancer (NSCLC) patients undergoing definitive radiation therapy: pilot study results. Cancer. 2015;121:139–49. https://doi.org/10.1002/cncr.28975.

    Article  PubMed  Google Scholar 

  32. Hiltermann TJ, Pore MM, van den Berg A, et al. Circulating tumor cells in small-cell lung cancer: a predictive and prognostic factor. Ann Oncol. 2012;23:2937–42. https://doi.org/10.1093/annonc/mds138.

    Article  CAS  PubMed  Google Scholar 

  33. Loeser A, Neumann M, Kocot A, Vergho DC, Spahn M, Riedmiller H. Serum carcino-embryonic antigen (CEA) and its possible use as tumor marker for secondary tumors in urinary intestinal reservoirs. Urol Oncol. 2013;31:644–8. https://doi.org/10.1016/j.urolonc.2011.02.021.

    Article  CAS  PubMed  Google Scholar 

  34. Hammarstrom S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol. 1999;9:67–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program No. 2012CB933303), the National Natural Science Foundation of China (Program Nos. 81472751, 61271162, 61401442 and 61571428), the Shanghai Pujiang Program (No. 15PJ1409800), The Jiangsu Provincial Funds for Six Categories of Top Talents (Program No.WS-066), The Research project of Jiangsu provincial health and Family Planning Commission (Program No. H201526). The Technology Project of Nantong (No.MS12017008-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongmei Chen or Hui Cong.

Ethics declarations

Conflict of interest

We have declared that no competing interests exist. The authors alone are responsible for the content and writing of the paper.

Ethical approval

The study complies with the Declaration of Helsinki and was approved by the Ethics Committee of Affiliated Hospital of Nantong University, and all patients gave written informed consent.

Informed consent

Informed consent was obtained from each patient involved in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, C., Wu, S., Chen, H. et al. Clinical significance of circulating tumor cells from lung cancer patients using microfluidic chip. Clin Exp Med 18, 191–202 (2018). https://doi.org/10.1007/s10238-018-0485-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-018-0485-6

Keywords

Navigation