Skip to main content

Advertisement

Log in

Diagnostic value of circulating microRNAs for osteosarcoma in Asian populations: a meta-analysis

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

A large number of studies have provided new insights into the diagnostic value of circulating microRNAs (miRNA) for osteosarcoma (OS), one of the most common primary malignancies in adolescents. However, inconsistent conclusions on the diagnostic performance of various kinds of miRNAs have been made. To assess the true diagnostic value of circulating miRNA for the early detection of OS in this meta-analysis, multiple databases, including PubMed, EMBASE, Web of Science, Chinese National Knowledge Infrastructure (CNKI), and Technology of Chongqing (VIP), were carefully searched for available studies up to October 30, 2015. The quality of each study was scored using the quality assessment of diagnostic accuracy studies-2 (QUADAS-2). Sensitivity and specificity was pooled using a random-effects model. Positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and the area under the curve (AUC) were used to measure the diagnostic values. Subgroup and meta-regression analyses were used to find potential sources of heterogeneity. Publication bias was tested with the Deeks’ funnel plot asymmetry test. Eight articles with 741 OS patients and 479 healthy controls were finally included in this meta-analysis. The pooled estimations indicated circulating miRNAs has a high accuracy for diagnosing OS, with sensitivity of 0.94, specificity of 0.80, PLR of 4.75, NLR of 0.07, DOR of 69, and AUC of 0.94. In addition, subgroup and meta-regression analyses revealed that the expression patterns of miRNAs obtained from plasma are more credible diagnostic biomarkers than those from serum. In conclusion, as noninvasive biomarkers, circulating miRNAs have a promising future for the diagnosis of OS in Asian populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer. 2009;115(7):1531–43.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res. 2009;152:3–13.

    Article  PubMed  Google Scholar 

  3. Messerschmitt PJ, Rettew AN, Brookover RE, Garcia RM, Getty PJ, Greenfield EM. Specific tyrosine kinase inhibitors regulate human osteosarcoma cells in vitro. Clin Orthop. 2008;466(9):2168–75.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tian Q, Jia J, Ling S, Liu Y, Yang S, Shao Z. A causal role for circulating miR-34b in osteosarcoma. Eur J Surg Oncol. 2014;40(1):67–72.

    Article  CAS  PubMed  Google Scholar 

  5. Federman N, Bernthal N, Eilber FC, Tap WD. The multidisciplinary management of osteosarcoma. Curr Treat Options Oncol. 2009;10(1–2):82–93.

    Article  PubMed  Google Scholar 

  6. Pakos EE, Nearchou AD, Grimer RJ, Koumoullis HD, Abudu A, Bramer JA, et al. Prognostic factors and outcomes for osteosarcoma: an international collaboration. Eur J Cancer. 2009;45(13):2367–75.

    Article  PubMed  Google Scholar 

  7. Clark JC, Dass CR, Choong PF. A review of clinical and molecular prognostic factors in osteosarcoma. J Cancer Res Clin Oncol. 2008;134(3):281–97.

    Article  CAS  PubMed  Google Scholar 

  8. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9(2):102–14.

    Article  CAS  PubMed  Google Scholar 

  9. van Kouwenhove M, Kedde M, Agami R. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer. 2011;11(9):644–56.

    Article  PubMed  Google Scholar 

  10. Chen X, Ba Y, Ma LJ, Cai X, Yin Y, Wang KH, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006.

    Article  CAS  PubMed  Google Scholar 

  11. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69.

    Article  CAS  PubMed  Google Scholar 

  12. Calin GA, Croce CM. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 2006;66(15):7390–4.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang BH, Pan XP, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  14. Cho WCS. OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer. 2007;6:60.

    Article  PubMed  PubMed Central  Google Scholar 

  15. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435(7043):828–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005;65(21):9628–32.

    Article  CAS  PubMed  Google Scholar 

  17. Abd-El-Fattah AA, Sadik NAH, Shaker OG, Aboulftouh ML. Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia. Cell Biochem Biophys. 2013;67(3):875–84.

    Article  CAS  PubMed  Google Scholar 

  18. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105(30):10513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36.

    Article  PubMed  Google Scholar 

  20. Deville WL, Buntinx F, Bouter LM, Montori VM, de Vet HC, van der Windt DA, et al. Conducting systematic reviews of diagnostic studies: didactic guidelines. BMC Med Res Methodol. 2002;2:9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

    Article  CAS  PubMed  Google Scholar 

  22. Dinnes J, Deeks J, Kirby J, Roderick P. A methodological review of how heterogeneity has been examined in systematic reviews of diagnostic test accuracy. Health Technol Assess. 2005;9(12):1.

    Article  CAS  Google Scholar 

  23. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Brit Med J. 2003;327(7414):557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol. 2005;58(9):882–93.

    Article  PubMed  Google Scholar 

  25. Yang Z, Zhang Y, Zhang X, Zhang M, Liu H, Zhang S, et al. Serum microRNA-221 functions as a potential diagnostic and prognostic marker for. Biomed Pharmacother. 2015;75:153–8.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou G, Lu M, Chen J, Li C, Zhang J, Shi X et al. Identification of miR-199a-5p in serum as noninvasive biomarkers for detecting. Tumour Biol. 2015; (1423-0380 (Electronic)): T-ahead of print.

  27. Liu OY, Liu P, Yang SH, Ye SN, Xu WH, Liu XZ. A three-plasma miRNA signature serves as novel biomarkers for osteosarcoma. Med Oncol. 2013;30(1):340.

    Article  CAS  PubMed  Google Scholar 

  28. Ma WL, Zhang XH, Chai J, Chen P, Ren P, Gong MZ. Circulating miR-148a is a significant diagnostic and prognostic biomarker for patients with osteosarcoma. Tumor Biol. 2014;35(12):12467–72.

    Article  CAS  Google Scholar 

  29. Tang J, Zhao H, Cai HK, Wu HS. Diagnostic and prognostic potentials of microRNA-27a in osteosarcoma. Biomed Pharmacother. 2015;71:222–6.

    Article  CAS  PubMed  Google Scholar 

  30. Cai HK, Zhao H, Tang J, Wu HS. Serum miR-195 is a diagnostic and prognostic marker for osteosarcoma. J Surg Res. 2015;194(2):505–10.

    Article  CAS  PubMed  Google Scholar 

  31. Lian F, Cui Y, Zhou CL, Gao KW, Wu LW. Identification of a plasma four-microRNA panel as potential noninvasive biomarker for osteosarcoma. Plos One. 2015;10(3):e0121499.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Huiwen R, Cheng Y, Hongwei S, Li H. Predictive effect of microRNA ratio in osteosarcoma. J Int Ncol. 2014;41(9):708–11.

    Google Scholar 

  33. Boerman I, Selvarajah GT, Nielen M, Kirpensteijn J. Prognostic factors in canine appendicular osteosarcoma—a meta-analysis. BMC Vet Res. 2012;8:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jones KB, Salah Z, Del Mare S, Galasso M, Gaudio E, Nuovo GJ, et al. miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Res. 2012;72(7):1865–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ogawa K, Seki T, Onji T, Adachi N, Tanaka S, Hide I, et al. Mutant γPKC that causes spinocerebellar ataxia type 14 upregulates Hsp70, which protects cells from the mutant’s cytotoxicity. Biochem Biophys Res Commun. 2013;440(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  36. PosthumaDeBoer J, Witlox MA, Kaspers GJL, van Royen BJ. Molecular alterations as target for therapy in metastatic osteosarcoma: a review of literature. Clin Exp Metastas. 2011;28(5):493–503.

    Article  CAS  Google Scholar 

  37. Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PMM. The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol. 2003;56(11):1129–35.

    Article  PubMed  Google Scholar 

  38. McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem. 2011;57(6):833–40.

    Article  CAS  PubMed  Google Scholar 

  39. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65(14):6029–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (Grant Number: 81472924) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Guo.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Informed consent

This study was approved by the institutional review board of Xi’an Jiaotong University.

Additional information

Xi Wang and Yujie Ning have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ning, Y., Yang, L. et al. Diagnostic value of circulating microRNAs for osteosarcoma in Asian populations: a meta-analysis. Clin Exp Med 17, 175–183 (2017). https://doi.org/10.1007/s10238-016-0422-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-016-0422-5

Keywords

Navigation