Skip to main content

Advertisement

Log in

Injection of basic fibroblast growth factor together with adipose-derived stem cell transplantation: improved cardiac remodeling and function in myocardial infarction

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Recent findings suggest that cell and gene transplantation in the infarcted myocardium may improve heart function. The aim of the study was to investigate the mechanism involved in improving heart function following the co-injection of adipose-derived stem cells (ADSCs) and basic fibroblast growth factor (bFGF) in a rat model of myocardial infarction. In this study, ADSCs were isolated from subcutaneous adipose tissues. The ADSCs were induced to differentiate into adipocytes, osteoblasts and cardiac myocytes in vitro. bFGF was co-injected with the ADSCs into the left ventricular wall in a rat myocardial infarction model. The structural and functional outcomes resulting from this transplantation were determined through detailed histological analysis and echocardiography. The graft size was significantly larger in the bFGF + ADSC group than in the PBS + ADSC group and PBS + bFGF group 4 weeks after injection (p < 0.05). The ADSCs were able to differentiate into cardiomyocytes, endothelial cells and vascular smooth muscle cells in vivo. There was a significant improvement in arteriole density within the infarcted area in the bFGF + ADSC group compared with the PBS + ADSC group and the PBS + bFGF group 4 weeks after transplantation (p < 0.05). The results of Western blot analysis showed that all of the treatments significantly reduced MMP2 and MMP9 protein levels compared with the PBS control group (p < 0.05) and that the levels of these proteins displayed the largest decrease in the bFGF + ADSC group (p < 0.05). In addition, the results of a quantitative analysis revealed that the proportion of fibrotic areas was significantly lower in the PBS + ADSC and bFGF + ADSC groups compared with the PBS-only group and PBS + bFGF group (p < 0.05). The combined application of bFGF and ADSC transplantation may significantly increase the number of arterioles, reduce the infarcted size, attenuate ventricular remodeling and improve cardiac function. This ADSC + bFGF treatment strategy (or a variation thereof) may prove to be broadly applicable to other candidate cell preparations used in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang T, Wu DQ, Jiang XJ, Zhang XZ, Li XY, Zhang JF, Zheng ZB, Zhuo R, Jiang H, Huang C. Novel thermosensitive hydrogel injection inhibits post-infarct ventricle remodelling. Eur J Heart Fail. 2009;11:14–9.

    Article  CAS  PubMed  Google Scholar 

  2. Zuba-Surma EK, Guo Y, Taher H, Sanganalmath SK, Hunt G, Vincent RJ, Kucia M, Abdel-Latif A, Tang XL, Ratajczak MZ, Dawn B, Bolli R. Transplantation of expanded bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) improves left ventricular function and remodelling after myocardial infarction. J Cell Mol Med. 2011;15:1319–28.

    Article  CAS  PubMed  Google Scholar 

  3. Nelson TJ, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y, Terzic A. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation. 2009;120:408–16.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tilemann L, Ishikawa K, Weber T, Hajjar RJ. Gene therapy for heart failure. Circ Res. 2012;110:777–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fedak PW. Paracrine effects of cell transplantation: modifying ventricular remodeling in the failing heart. Semin Thorac Cardiovasc Surg. 2008;20:87–93.

    Article  PubMed  Google Scholar 

  6. Lee N, Thorne T, Losordo DW, Yoon YS. Repair of ischemic heart disease with novel bone marrow-derived multipotent stem cells. Cell Cycle. 2005;4:861–4.

    Article  CAS  PubMed  Google Scholar 

  7. Laflamme MA, Gold J, Xu C, Hassanipour M, Rosler E, Police S, Muskheli V, Murry CE. Formation of human myocardium in the rat heart from human embryonic stem cells. J Am Pathol. 2005;167:663–71.

    Article  CAS  Google Scholar 

  8. Murry CE, Field LJ, Menasché P. Cell-based cardiac repair: reflections at the 10-year point. Circulation. 2005;112:3174–83.

    Article  PubMed  Google Scholar 

  9. Zhang DZ, Gai LY, Liu HW, Jin QH, Huang JH, Zhu XY. Transplantation of autologous adipose-derived stem cells ameliorates cardiac function in rabbits with myocardial infarction. Chin Med J (Engl). 2007;120:300–7.

    Google Scholar 

  10. Teng CJ, Luo J, Chiu RC, Shum-Tim D. Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty. J Thorac Cardiovasc Surg. 2006;132:628–32.

    Article  PubMed  Google Scholar 

  11. Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med. 2006;12:459–65.

    Article  CAS  PubMed  Google Scholar 

  12. Schenke-Layland K, Strem BM, Jordan MC, Deemedio MT, Hedrick MH, Roos KP, Fraser JK, Maclellan WR. Adipose tissue-derived cells improve cardiac function following myocardial infarction. J Surg Res. 2009;153:217–23.

    Article  CAS  PubMed  Google Scholar 

  13. Mazo M, Planat-Bénard V, Abizanda G, Pelacho B, Léobon B, Gavira JJ, Peñuelas I, Cemborain A, Pénicaud L, Laharrague P, Joffre C, Boisson M, Ecay M, Collantes M, Barba J, Casteilla L, Prósper F. Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. Eur J Heart Fail. 2008;10:454–62.

    Article  PubMed  Google Scholar 

  14. Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, Taureau C, Cousin B, Abbal M, Laharrague P, Penicaud L, Casteilla L, Blancher A. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol. 2005;129:118–29.

    Article  PubMed  Google Scholar 

  15. Yang YJ, Qian HY, Huang J, Li JJ, Gao RL, Dou KF, Yang GS, Willerson JT, Geng YJ. Combined therapy with simvastatin and bone marrow-derived mesenchymal stem cells increases benefits in infarcted swine hearts. Arterioscler Thromb Vasc Biol. 2009;29:2076–82.

    Article  PubMed  Google Scholar 

  16. Tao Z, Chen B, Tan X, Zhao Y, Wang L, Zhu T, Cao K, Yang Z, Kan YW, Su H. Coexpression of VEGF and angiopoietin-1 promotes angiogenesis and cardiomyocyte proliferation reduces apoptosis in porcine myocardial infarction (MI) heart. Proc Natl Acad Sci. 2011;108:2064–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H, Udelson JE, Gervino EV, Pike M, Whitehouse MJ, Moon T, Chronos NA. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation. 2002;105:788–93.

    Article  CAS  PubMed  Google Scholar 

  18. Hellman U, Malm L, Ma LP, Larsson G, Mörner S, Fu M, Engström-Laurent A, Waldenström A. Growth factor PDGF-BB stimulates cultured cardiomyocytes to synthesize the extracellular matrix component hyaluronan. PLoS One. 2010;5:14393.

    Article  Google Scholar 

  19. Laham RJ, Sellke FW, Edelman ER, Pearlman JD, Ware JA, Brown DL, Gold JP, Simons M. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation. 1999;100:1865–71.

    Article  CAS  PubMed  Google Scholar 

  20. Lazarous DF, Scheinowitz M, Shou M, Hodge E, Rajanayagam S, Hunsberger S, Robison WG Jr, Stiber JA, Correa R, Epstein SE. Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation. 1995;91:145–53.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Liu XC, Zhang GW, Zhao J, Zhang JM, Shi RF, Huang YZ, Zhao CH, Liu TJ, Song CX, Lü F, Yang Q, He GW. A new transmyocardial degradable stent combined with growth factor, heparin, and stem cells in acute myocardial infarction. Cardiovasc Res. 2009;84:461–9.

    Article  CAS  PubMed  Google Scholar 

  22. Scheinowitz M, Kotlyar AA, Zimand S, Leibovitz I, Varda-Bloom N, Ohad D, Goldberg I, Engelberg S, Savion N, Eldar M. Effect of basic fibroblast growth factor on left ventricular geometry in rats subjected to coronary occlusion and reperfusion. Isr Med Assoc J. 2002;4:109–13.

    CAS  PubMed  Google Scholar 

  23. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sreerekha PR, Divya P, Krishnan LK. Adult stem cell homing and differentiation in vitro on composite fibrin matrix. Cell Prolif. 2006;39:301–12.

    Article  CAS  PubMed  Google Scholar 

  25. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, Braunwald E. Myocardial infarct size and ventricular function in rats. Circ Res. 1979;44:503–12.

    Article  CAS  PubMed  Google Scholar 

  26. Lange S, Heger J, Euler G, Wartenberg M, Piper HM, Sauer H. Platelet-derived growth factor BB stimulates vasculogenesis of embryonic stem cell-derived endothelial cells by calcium- mediated generation of reactive oxygen species. Cardiovasc Res. 2009;81:159–68.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol. 2001;33:907–21.

    Article  CAS  PubMed  Google Scholar 

  28. Müller-Ehmsen J, Whittaker P, Kloner RA, Dow JS, Sakoda T, Long TI, Laird PW, Kedes L. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol. 2002;34:107–16.

    Article  PubMed  Google Scholar 

  29. Reinecke H, Murry CE. Taking the death toll after cardiomyocyte grafting: a reminder of the importance of quantitative biology. J Mol Cell Cardiol. 2002;34:251–3.

    Article  CAS  PubMed  Google Scholar 

  30. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25:1015–24.

    Article  CAS  PubMed  Google Scholar 

  31. Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5:362–9.

    Article  PubMed  Google Scholar 

  32. Gaustad KG, Boquest AC, Anderson BE, Gerdes AM, Collas P. Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem Biophys Res Commun. 2004;314:420–7.

    Article  CAS  PubMed  Google Scholar 

  33. Traktuev DO, Parfenova EV, Tkachuk VA, March KL. Adipose stromal cells: plastic type of cells with high therapeutic potential. Tsitologiia. 2006;48:83–94.

    CAS  PubMed  Google Scholar 

  34. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS, Dzau VJ. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med. 2005;11:367–8.

    Article  CAS  PubMed  Google Scholar 

  35. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006;20:661–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ebelt H, Jungblut M, Zhang Y, Kubin T, Kostin S, Technau A, Oustanina S, Niebrügge S, Lehmann J, Werdan K, Braun T. Cellular cardiomyoplasty: improvement of left ventricular function correlates with the release of cardioactive cytokines. Stem Cells. 2007;25:236–44.

    Article  CAS  PubMed  Google Scholar 

  37. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004;94:678–85.

    Article  CAS  PubMed  Google Scholar 

  38. Dixon JA, Gorman RC, Stroud RE, Bouges S, Hirotsugu H, Gorman JH 3rd, Martens TP, Itescu S, Schuster MD, Plappert T, St John-Sutton MG, Spinale FG. Mesenchymal cell transplantation andmyocardial remodeling after myocardialinfarction. Circulation. 2009;120(Suppl):220–9.

    Article  Google Scholar 

  39. Ohnishi S, Sumiyoshi H, Kitamura S, Nagaya N. Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett. 2007;581:3961–6.

    Article  CAS  PubMed  Google Scholar 

  40. Novotny NM, Ray R, Markel TA, Crisostomo PR, Wang M, Wang Y, Meldrum DR. Stem cell therapy in myocardial repair and remodeling. J Am Coll Surg. 2008;207:423–34.

    Article  PubMed  Google Scholar 

  41. Tang J, Wang J, Guo L, Kong X, Yang J, Zheng F, Zhang L, Huang Y. Mesenchymal stem cells modified with stromal cell-derived factor 1 alpha improve cardiac remodeling via paracrine activation of hepatocyte growth factor in a rat model of myocardial infarction. Mol Cells. 2010;29:9–19.

    Article  PubMed  Google Scholar 

  42. Sakakibara Y, Tambara K, Sakaguchi G, Lu F, Yamamoto M, Nishimura K, Tabata Y, Komeda M. Toward surgical angiogenesis using slow-released basic fibroblast growth factor. Eur J Cardiothorac Surg. 2003;24:105–12.

    Article  PubMed  Google Scholar 

  43. Takehara N, Tsutsumi Y, Tateishi K, Ogata T, Tanaka H, Ueyama T, Takahashi T, Takamatsu T, Fukushima M, Komeda M, Yamagishi M, Yaku H, Tabata Y, Matsubara H, Oh H. Controlled delivery of basic fibroblast growth factor promotes human ardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J Am Coll Cardiol. 2008;52:1858–65.

    Article  CAS  PubMed  Google Scholar 

  44. Post MJ, Laham R, Sellke FW, Simons M. Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res. 2001;49:522–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Technology Support Foundation for Xinjiang Uygur Autonomous Region of China (NO. 200891127), The National Natural Science young Foundation of China (NO. 81000089), The National Natural Science Foundation of China (NO. 81160026) and The National Natural Science Foundation of China (NO. 81060025). We present great thanks to BD. Chen for technical assistance in histological preparation and staining.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yitong Ma.

Ethics declarations

Conflict of interest

None.

Additional information

Baozhu Wang, Xiang Ma, Long Zhao and Xinrong Zhou have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Ma, X., Zhao, L. et al. Injection of basic fibroblast growth factor together with adipose-derived stem cell transplantation: improved cardiac remodeling and function in myocardial infarction. Clin Exp Med 16, 539–550 (2016). https://doi.org/10.1007/s10238-015-0383-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-015-0383-0

Keywords

Navigation