Skip to main content

Advertisement

Log in

miRNA-202 in bone marrow stromal cells affects the growth and adhesion of multiple myeloma cells by regulating B cell-activating factor

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Bone marrow stromal cells (BMSCs) up-regulate B cell-activating factor (BAFF) in multiple myeloma. Increasing experimental evidence has shown that microRNAs play a causal role in hematology tumorigenesis. In this study, we characterized the role of miR-202 in regulating the expression of BAFF in BMSCs. It was found that expressions of BAFF mRNA and protein were increased in BMSCs treated with miR-202 inhibitor. The growth rate of miR-202 mimics transfection cells was significantly lower than that of non-transfected cells. The expression of Bcl-2 protein was down-regulated, and Bax protein was up-regulated after miR-202 mimics transfection. Over-expression of miR-202 in BMSCs rendered MM cells more sensitive to bortezomib. More significantly, the regulatory effect of miR-202 could inhibit the activation of NF-κB pathway in BMSCs. These results suggest that miR-202 functions as a modulator that can negatively regulate BAFF by inhibiting MM cell survival, growth, and adhesion in the bone marrow microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

miRNA:

microRNA

BMSCs:

Bone marrow stromal cells

MM:

Multiple myeloma

BAFF:

B cell-activating factor

Bort:

Bortezomib

Thal:

Thalidomide

Dex:

Dexamethasone

TNF:

Tumor necrosis factors

PBMCs:

Peripheral blood mononuclear cells

CAM-DR:

Cell adhesion-mediated drug resistance

ICAM-1:

Intercellular adhesion molecule-1

VCAM-1:

Vascular cell adhesion molecule-1

VEGF:

Vascular endothelial growth factor

IL-6:

Interleukin 6

ELISA:

Enzyme-linked immunosorbent assay

References

  1. Cömert M, Güneş AE, Sahin F, et al. Quality of life and supportive care in multiple myeloma. Turk J Haematol. 2013;30:234–46.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Andrews SW, Kabrah S, May JE, et al. Multiple myeloma: the bone marrow microenvironment and its relation to treatment. Br J Biomed Sci. 2013;70:110–20.

    Article  CAS  PubMed  Google Scholar 

  3. Terpos E, Christoulas D. Effects of proteasome inhibitors on bone cancer. Bonekey Rep. 2013;2:395.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moreaux Jérôme, Legouffe Eric, Jourdan Eric. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood. 2004;103:3148–57.

    Article  CAS  PubMed  Google Scholar 

  5. Podar K, Chauhan D, Anderson KC. Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia. 2009;23:10–24.

    Article  CAS  PubMed  Google Scholar 

  6. Fragioudaki M, Boula A, Tsirakis G, et al. B cell-activating factor: its clinical significance in multiple myeloma patients. Ann Hematol. 2012;91:1413–8.

    Article  CAS  PubMed  Google Scholar 

  7. Fragioudaki M, Tsirakis G, Pappa CA, et al. Serum BAFF levels are related to angiogenesis and prognosis in patients with multiple myeloma. Leuk Res. 2012;36:1004–8.

    Article  CAS  PubMed  Google Scholar 

  8. Shen X, Zhu W, Zhang X, et al. A role of both NF-κB pathways in expression and transcription regulation of BAFF-R gene in multiple myeloma cells. Mol Cell Biochem. 2011;357:21–30.

    Article  CAS  PubMed  Google Scholar 

  9. Xu G, Shen XJ, Pu J, et al. BLyS expression and JNK activation may form a feedback loop to promote survival and proliferation of multiple myeloma cells. Cytokine. 2012;60:505–13.

    Article  CAS  PubMed  Google Scholar 

  10. Tai YT, Li XF, Breitkreutz I, et al. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 2006;66:6675–82.

    Article  CAS  PubMed  Google Scholar 

  11. Zheng Y, Cai Z, Wang S, et al. Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood. 2009;114:3625–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fuchs O. Targeting of NF-kappaB signaling pathway, other signaling pathways and epigenetics in therapy of multiple myeloma. Cardiovasc Hematol Disord: Drug Targets. 2013;13:16–34.

    Article  CAS  Google Scholar 

  13. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  14. Kong YW, Ferland-McCollough D, Jackson TJ, et al. MicroRNAs in cancer management. Lancet Oncol. 2012;13:e249–58.

    Article  CAS  PubMed  Google Scholar 

  15. Corsini LR, Bronte G, Terrasi M, et al. The role of microRNAs in cancer: diagnostic and prognostic biomarkers and targets of therapies. Expert Opin Ther Targets. 2012;16(Suppl 2):S103–9.

    Article  CAS  PubMed  Google Scholar 

  16. Pichiorri F, Suh SS, Ladetto M, et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA. 2008;105:12885–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Corthals SL, Sun SM, Kuiper R, et al. MicroRNA signatures characterize multiple myeloma patients. Leukemia. 2011;25:1784–9.

    Article  CAS  PubMed  Google Scholar 

  18. Hao M, Zhang L, An G, et al. Bone marrow stromal cells protect myeloma cells from bortezomib induced apoptosis by suppressing microRNA-15a expression. Leuk Lymphoma. 2011;52:1787–94.

    Article  CAS  PubMed  Google Scholar 

  19. Fisher RI, Bernstein SH, Kahl BS, et al. Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol. 2006;24:4867–74.

    Article  PubMed  Google Scholar 

  20. Chi J, Ballabio E, Chen XH, et al. MicroRNA expression in multiple myeloma is associated with genetic subtype, isotype and survival. Biol Direct. 2011;6:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hao M, Zhang L, An G, et al. Bone marrow stromal cells protect myeloma cells from bortezomib induced apoptosis by suppressing microRNA-15a expression. Leuk Lymphoma. 2011;52:1787–94.

    Article  CAS  PubMed  Google Scholar 

  22. Gupta D, Treon SP, Shima Y, et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia. 2001;15:1950–61.

    Article  CAS  PubMed  Google Scholar 

  23. Schrauder MG, Strick R, Schulz-Wendtland R, et al. Circulating micro-RNAs as potential blood-based markers for early stage breast cancer detection. PLoS ONE. 2012;7:e29770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nymark P, Guled M, Borze I, et al. Integrative analysis of microRNA, mRNA and aCGH data reveals asbestos-and histology-related changes in lung cancer. Genes Chromosomes Cancer. 2011;50:585–97.

    Article  CAS  PubMed  Google Scholar 

  25. Podar K, Anderson KC. The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood. 2005;105:1383–95.

    Article  CAS  PubMed  Google Scholar 

  26. Hideshima T, Mitsiades C, Tonon G, et al. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer. 2004;7:585–98.

    Article  Google Scholar 

  27. Li ZW, Chen H, Campbell RA, et al. NF-kappaB in the pathogenesis and treatment of multiple myeloma. Curr Opin Hematol. 2008;15:391–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Grant support: the National Natural Science Foundation of China (81301498; 81271920); Jiangsu Provincial Program for Medical Innovation Teams and Leading Talents (LJ201133); Scientific Research Subject of Jiangsu Province Health Department (H201422), and the six major human resources project of Jiangsu Province (20012-WS-119), Translational Medicine Project of Affiliated Hospital of Nantong University (TDF-zh201407).

Conflict of interest

The authors have no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoqing Ju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Guo, Y., Yu, J. et al. miRNA-202 in bone marrow stromal cells affects the growth and adhesion of multiple myeloma cells by regulating B cell-activating factor. Clin Exp Med 16, 307–316 (2016). https://doi.org/10.1007/s10238-015-0355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-015-0355-4

Keywords

Navigation