Skip to main content

Advertisement

Log in

The metalloproteinase ADAM17 and the epidermal growth factor receptor (EGFR) signaling drive the inflammatory epithelial response in Sjögren’s syndrome

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Primary Sjögren’s syndrome (pSS) is a chronic autoimmune disorder that particularly compromises the function of exocrine glands. The pathogenetic mechanisms of this autoimmune exocrinopathy have not been fully elucidated. Since increasing evidence actually suggests that the epidermal growth factor receptor (EGFR) pathway has a major impact on the inflammatory/immune reactions of the epithelial cells, in the apparent effort of enhancing innate immune defense while opposing overactivation of pro-inflammatory functions, the focus of the work presented here is clarify whether the EGFR–extracellular-signal-regulated kinase (ERK) pathway plays a role in the pro-inflammatory responses mounted by pSS salivary gland epithelial cells (SGEC). Investigations revealed that the EGFR-mediated activation of the downstream effectors ERK1/2 in pSS SGEC appeared to require ADAM17-dependent release of the endogenous EGFR ligand amphiregulin and transactivation of the EGFR. Moreover, blockade of amphiregulin bioactivity using a neutralizing Ab significantly reduced EGFR transactivation and ERK1/2 phosphorylation. In addition, pSS SGEC treated with the specific ADAM17 inhibitor TAPI-1 and with the EGFR inhibitor AG1478 exhibited deactivated AREG/EGFR/ERK signaling pathway and reduced pro-inflammatory cytokines released.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Manoussakis MN, Kapsogeorgou EK (2010) The role of intrinsic epithelial activation in the pathogenesis of Sjogren’s syndrome. J Autoimmun 35:219–224

    Article  CAS  PubMed  Google Scholar 

  2. Mavragani CP, Nezos A, Moutsopoulos HM (2013) New advances in the classification, pathogenesis and treatment of Sjögren’s syndrome. Curr Opin Rheumatol 25:623–629

    Article  CAS  PubMed  Google Scholar 

  3. Manoussakis MN, Kapsogeorgou EK (2007) The role of epithelial cells in the pathogenesis of Sjogren’s syndrome. Clin Rev Allergy Immunol 32:225–230

    Article  CAS  PubMed  Google Scholar 

  4. Lisi S, Sisto M, D’Amore M, Lofrumento DD, Ribatti D (2013) Emerging avenues linking inflammation, angiogenesis and Sjögren’s syndrome. Cytokine 61:693–703

    Article  CAS  PubMed  Google Scholar 

  5. Kapsogeorgou EK, Dimitriou ID, Abu-Helu RF, Moutsopoulos HM, Manoussakis MN (2001) Activation of epithelial and myoepithelial cells in the salivary glands of patients with Sjögren’s syndrome: high expression of intercellular adhesion molecule-1 (ICAM1) in biopsy specimens and cultured cells. Clin Exp Immunol 124:126–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tzioufas AG, Kapsogeorgou EK, Moutsopoulos HM (2012) Pathogenesis of Sjögren’s syndrome: what we know and what we should learn. J Autoimmun 39:4–8

    Article  CAS  PubMed  Google Scholar 

  7. Sisto M, Lisi S, Lofrumento D, D’Amore M, Scagliusi P, Mitolo V (2007) Autoantibodies from Sjögren’s syndrome trigger apoptosis in salivary gland cell line. Ann N Y Acad Sci 1108:418–425

    Article  CAS  PubMed  Google Scholar 

  8. Sisto M, D’Amore M, Caprio S, Mitolo V, Scagliusi P, Lisi S (2009) Tumor necrosis factor inhibitors block apoptosis of human epithelial cells of the salivary glands. Ann N Y Acad Sci 1171:407–414

    Article  PubMed  Google Scholar 

  9. Scheller J, Chalaris A, Garbers C, Rose-John S (2011) ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol 32:380–387

    Article  CAS  PubMed  Google Scholar 

  10. Sisto M, Lisi S, Lofrumento DD, Frassanito MA, Cucci L, D’Amore S, Mitolo V, D’Amore M (2009) Induction of TNF-alpha-converting enzyme-ectodomain shedding by pathogenic autoantibodies. Int Immunol 21:1341–1349

    Article  CAS  PubMed  Google Scholar 

  11. Lisi S, Sisto M (2010) Effects of biological drug adalimumab on tumour necrosis factor-alpha-converting enzyme activation. Immunol Cell Biol 88:297–304

    Article  CAS  PubMed  Google Scholar 

  12. Lisi S, Sisto M, Lofrumento DD, Cucci L, Frassanito MA, Mitolo V, D’Amore M (2010) Pro-inflammatory role of Anti-Ro/SSA autoantibodies through the activation of Furin-TACE-amphiregulin axis. J Autoimmun 35:160–170

    Article  CAS  PubMed  Google Scholar 

  13. Sisto M, Lisi S, Lofrumento DD, Ingravallo G, Mitolo V, D’Amore M (2010) Expression of pro-inflammatory TACE-TNF-α-amphiregulin axis in Sjögren’s syndrome salivary glands. Histochem Cell Biol 134:345–353

    Article  CAS  PubMed  Google Scholar 

  14. Lisi S, Sisto M, Lofrumento DD, D’Amore M (2012) Sjögren’s syndrome autoantibodies provoke changes in gene expression profiles of inflammatory cytokines triggering a pathway involving TACE/NF-κB. Lab Invest 92:615–624

    Article  CAS  PubMed  Google Scholar 

  15. Lisi S, Sisto M, Lofrumento DD, D’Amore M, De Lucro R, Ribatti D (2013) GRO-α/CXCR2 system and ADAM17 correlated expression in Sjögren’s syndrome. Inflammation 36:759–766

    Article  CAS  PubMed  Google Scholar 

  16. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 385:729

    Article  CAS  PubMed  Google Scholar 

  17. Lee DC, Sunnarborg SW, Hinkle CL, Myers TJ, Stevenson MY, Russell WE, Castner BJ, Gerhart MJ, Paxton RJ, Black RA, Chang A, Jackson LF (2003) TACE/ADAM17 processing of EGFR ligands indicates a role as a physiological convertase. Ann N Y Acad Sci 995:22–38

    Article  CAS  PubMed  Google Scholar 

  18. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185

    Article  CAS  PubMed  Google Scholar 

  19. Wells A (1999) EGF receptor. Int J Biochem Cell Biol 31:637–643

    Article  CAS  PubMed  Google Scholar 

  20. Kyriakis JM, App H, Zhang XF, Banerjee P, Brautigan DL, Rapp UR, Avruch J (1992) Raf-1 activates MAP kinase–kinase. Nature 358:417–421

    Article  CAS  PubMed  Google Scholar 

  21. Borrell-Pagès M, Rojo F, Albanell J, Baselga J, Arribas J (2003) TACE is required for the activation of the EGFR by TGF-alpha in tumors. EMBO J 22:1114–1124

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vitali C, Bombardieri S, Jonsson R, Moutsopoulos HM, Alexander EL, Carsons SE, Daniels TE, Fox PC, Fox RI, Kassan SS, Pillemer SR, Talal N, Weisman MH, European Study Group on Classification Criteria for Sjögren’s Syndrome (2002) Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis 61:554–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sens DA, Hintz DS, Rudisill MT, Sens MA, Spicer SS (1985) Explant culture of human submandibular gland epithelial cells: evidence for ductal origin. Lab Invest 52:559–567

    CAS  PubMed  Google Scholar 

  24. Pastore S, Mascia F, Mariani V, Girolomoni G (2008) The epidermal growth factor receptor system in skin repair and inflammation. J Invest Dermatol 128:1365–1374

    Article  CAS  PubMed  Google Scholar 

  25. Zhao D, Zhan Y, Koon HW, Zeng H, Keates S, Moyer MP, Pothoulakis C (2004) Metalloproteinase-dependent transforming growth factor-release mediates neurotensin-stimulated MAP kinase activation in human colonic epithelial cells. J Biol Chem 279:43547–43554

    Article  CAS  PubMed  Google Scholar 

  26. Blobel CP (2005) ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6:32–43

    Article  CAS  PubMed  Google Scholar 

  27. Fischer OM, Hart S, Gschwind A, Ullrich A (2003) EGFR signal transactivation in cancer cells. Biochem Soc Trans 31:1203–1208

    Article  CAS  PubMed  Google Scholar 

  28. Hinkle CL, Sunnarborg SW, Loiselle D, Parker CE, Stevenson M, Russell WE, Lee DC (2004) Selective roles for tumor necrosis factor alpha-converting enzyme/ADAM17 in the shedding of the epidermal growth factor receptor ligand family: the juxtamembrane stalk determines cleavage efficiency. J Biol Chem 279:24179–24188

    Article  CAS  PubMed  Google Scholar 

  29. Chokki M, Mitsuhashi H, Kamimura T (2006) Metalloprotease-dependent amphiregulin release mediates tumor necrosis factor-alpha-induced IL-8 secretion in the human airway epithelial cell line NCI-H292. Life Sci 78:3051–3057

    Article  CAS  PubMed  Google Scholar 

  30. Wang ZQ, Wu DC, Huang FP, Yang GY (2004) Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Res 996:55–66

    Article  CAS  PubMed  Google Scholar 

  31. Foey AD, Parry SL, Williams LM, Feldmann M, Foxwell BM, Brennan FM (1998) Regulation of monocyte IL-10 synthesis by endogenous IL-1 and TNF-alpha: role of the p38 and p42/44 mitogen-activated protein kinases. J Immunol 160:920–928

    CAS  PubMed  Google Scholar 

  32. Saklatvala J, Rawlinson LM, Marshall CJ, Kracht M (1993) Interleukin 1 and tumour necrosis factor activate the mitogen-activated protein (MAP) kinase kinase in cultured cells. FEBS Lett 334:189–192

    Article  CAS  PubMed  Google Scholar 

  33. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    Article  CAS  PubMed  Google Scholar 

  34. Wetzker R, Böhmer FD (2003) Transactivation joins multiple tracks to the ERK/MAPK cascade. Nat Rev Mol Cell Biol 4:651–657

    Article  CAS  PubMed  Google Scholar 

  35. Stoll SW, Johnson JL, Bhasin A, Johnston A, Gudjonsson JE, Rittié L, Elder JT (2010) Metalloproteinase-mediated, context-dependent function of amphiregulin and HB-EGF in human keratinocytes and skin. J Invest Dermatol 130:295–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Berasain C, Nicou A, Garcia-Irigoyen O, Latasa MU, Urtasun R, Elizalde M, Salis F, Perugorría MJ, Prieto J, Recio JA, Corrales FJ, Avila MA (2012) Epidermal growth factor receptor signalling in hepatocellular carcinoma: inflammatory activation and a new intracellular regulatory mechanism. Dig Dis 30:524–531

    Article  PubMed  Google Scholar 

  37. Leserer M, Gschwind A, Ullrich A (2000) Epidermal growth factor receptor signal transactivation. IUBMB Life 49:405–409

    Article  CAS  PubMed  Google Scholar 

  38. Doedens JR, Mahimkar RM, Black RA (2003) TACE/ADAM-17 enzymatic activity is increased in response to cellular stimulation. Biochem Biophys Res Commun 308:331–338

    Article  CAS  PubMed  Google Scholar 

  39. Gooz M (2010) ADAM-17: the enzyme that does it all. Crit Rev Biochem Mol Biol 45:146–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Keates S, Han X, Kelly CP, Keates AC (2007) Macrophage-inflammatory protein-3alpha mediates epidermal growth factor receptor transactivation and ERK1/2 MAPK signaling in Caco-2 colonic epithelial cells via metalloproteinase-dependent release of amphiregulin. J Immunol 178:8013–8021

    Article  CAS  PubMed  Google Scholar 

  41. Sawalha AH, Jeffries M, Webb R, Lu Q, Gorelik G, Ray D, Osban J, Knowlton N, Johnson K, Richardson B (2008) Defective T-cell ERK signalling induces interferon-regulated gene expression and overexpression of methylation-sensitive genes similar to lupus patients. Genes Immun 9:368–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Singh K, Deshpande P, Pryshchep S, Colmegna I, Liarski V, Weyand CM (2009) ERK-dependent T cell receptor threshold calibration in rheumatoid arthritis. J Immunol 183:8258–8267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mascia F, Mariani V, Girolomoni G, Pastore S (2003) Blockade of the EGF receptor induces a deranged chemokine expression in keratinocytes leading to enhanced skin inflammation. Am J Pathol 163:303–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to M.V.C. Pragnell, B.A., a professional text editor, who revised and edited for English language the manuscript.

Conflict of interest

We do not have any conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margherita Sisto.

Additional information

Margherita Sisto and Sabrina Lisi have equal contribution in this work and both are equally considered as “first author”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sisto, M., Lisi, S., D’Amore, M. et al. The metalloproteinase ADAM17 and the epidermal growth factor receptor (EGFR) signaling drive the inflammatory epithelial response in Sjögren’s syndrome. Clin Exp Med 15, 215–225 (2015). https://doi.org/10.1007/s10238-014-0279-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-014-0279-4

Keywords

Navigation