Skip to main content

Advertisement

Log in

Intravenous immunoglobulin-mediated immunosuppression and the development of an IVIG substitute

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Immunoglobulins are glycoproteins produced by the cells of the immune system. Their primary function is to protect the body from pathogenic infection. Moreover, a concentrated polyclonal mixture of immunoglobulin G (IgG), the so-called intravenous IgG (IVIG), has been used to treat various chronic and systemic disorders of the immune system. Studies on the effects of IVIG in autoimmune disease models have revealed that IgG Fc fragments confer protection against various autoimmune diseases. The identification of this IgG Fc immunomodulatory component is important for the development of IVIG substitutes. The focus of this review is to introduce one of the Fc regulatory entities and to provide a summary of the current knowledge of the putative general mechanisms underlying IVIG activity in vivo on the basis of these Fc fragments. We also address the recent insights into several approaches for the development of IVIG substitutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

APCs:

Antigen-presenting cells

DC:

Dendritic cell

DC-SIGN:

Dendritic cell-specific ICAM-3-grabbing nonintegrin

DC-SIGN-R:

DC-SIGN related

SIGN-R1:

Murine homologue of DC-SIGN

EAE:

Experimental autoimmune encephalomyelitis

HSV:

Herpes simplex virus

IL:

Interleukin

ITP:

Idiopathic thrombocytopenic purpura

IVIG:

Intravenous immunoglobulin

NK:

Natural killer

SLE:

Systemic lupus erythematosus

TGF:

Transforming growth factor

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

References

  1. Hartung HP, Mouthon L, Ahmed R, Jordan S, Laupland KB, Jolles S (2009) Clinical applications of intravenous immunoglobulins (IVIg)-beyond immunodeficiencies and neurology. Clin Exp Immunol 158(Suppl 1):23–33. doi:10.1111/j.1365-2249.2009.04024.x

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Negi VS, Elluru S, Siberil S, Graff-Dubois S, Mouthon L, Kazatchkine MD, Lacroix-Desmazes S, Bayry J, Kaveri SV (2007) Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J Clin Immunol 27(3):233–245. doi:10.1007/s10875-007-9088-9

    PubMed  CAS  Google Scholar 

  3. Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19:275–290. doi:10.1146/annurev.immunol19.1.275

    PubMed  CAS  Google Scholar 

  4. Nimmerjahn F, Ravetch JV (2008) Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 26:513–533. doi:10.1146/annurev.immunol.26.021607.090232

    PubMed  CAS  Google Scholar 

  5. Yeung C (2008) Update on applications of IVIg in immunologically-related dermatoses. Hong Kong Med Diary 13:21–23

    Google Scholar 

  6. Durandy A, Kaveri SV, Kuijpers TW, Basta M, Miescher S, Ravetch JV, Rieben R (2009) Intravenous immunoglobulins—understanding properties and mechanisms. Clin Exp Immunol 158(Suppl 1):2–13. doi:10.1111/j.1365-2249.2009.04022.x

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Ephrem A, Chamat S, Miquel C, Fisson S, Mouthon L, Caligiuri G, Delignat S, Elluru S, Bayry J, Lacroix-Desmazes S, Cohen JL, Salomon BL, Kazatchkine MD, Kaveri SV, Misra N (2008) Expansion of CD4+ CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood 111(2):715–722. doi:10.1182/blood-2007-03-079947

    PubMed  CAS  Google Scholar 

  8. Sewell WA, Jolles S (2002) Immunomodulatory action of intravenous immunoglobulin. Immunology 107(4):387–393

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Svetlicky N, Ortega-Hernandez OD, Mouthon L, Guillevin L, Thiesen HJ, Altman A, Kravitz MS, Blank M, Shoenfeld Y (2013) The advantage of specific intravenous immunoglobulin (sIVIG) on regular IVIG: experience of the last decade. J Clin Immunol 33(Suppl 1):S27–S32. doi:10.1007/s10875-012-9842-5

    PubMed  Google Scholar 

  10. Debre M, Bonnet MC, Fridman WH, Carosella E, Philippe N, Reinert P, Vilmer E, Kaplan C, Teillaud JL, Griscelli C (1993) Infusion of Fc gamma fragments for treatment of children with acute immune thrombocytopenic purpura. Lancet 342(8877):945–949

    PubMed  CAS  Google Scholar 

  11. Samuelsson A, Towers TL, Ravetch JV (2001) Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 291(5503):484–486. doi:10.1126/science.291.5503.484

    PubMed  CAS  Google Scholar 

  12. Bruhns P, Samuelsson A, Pollard JW, Ravetch JV (2003) Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity 18(4):573–581

    PubMed  CAS  Google Scholar 

  13. Kaneko Y, Nimmerjahn F, Ravetch JV (2006) Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313(5787):670–673. doi:10.1126/science.1129594

    PubMed  CAS  Google Scholar 

  14. Ramakrishna C, Newo AN, Shen YW, Cantin E (2011) Passively administered pooled human immunoglobulins exert IL-10 dependent anti-inflammatory effects that protect against fatal HSV encephalitis. PLoS Pathog 7(6):e1002071. doi:10.1371/journal.ppat.1002071

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Bond A, Alavi A, Axford JS, Youinou P, Hay FC (1996) The relationship between exposed galactose and N-acetylglucosamine residues on IgG in rheumatoid arthritis (RA), juvenile chronic arthritis (JCA) and Sjogren’s syndrome (SS). Clin Exp Immunol 105(1):99–103

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Das H, Atsumi T, Fukushima Y, Shibuya H, Ito K, Yamada Y, Amasaki Y, Ichikawa K, Amengual O, Koike T (2004) Diagnostic value of antiagalactosyl IgG antibodies in rheumatoid arthritis. Clin Rheumatol 23(3):218–222. doi:10.1007/s10067-003-0860-9

    PubMed  Google Scholar 

  17. Holland M, Yagi H, Takahashi N, Kato K, Savage CO, Goodall DM, Jefferis R (2006) Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA-associated systemic vasculitis. Biochim Biophys Acta 1760(4):669–677. doi:10.1016/j.bbagen.2005.11.021

    PubMed  CAS  Google Scholar 

  18. Shinzaki S, Iijima H, Nakagawa T, Egawa S, Nakajima S, Ishii S, Irie T, Kakiuchi Y, Nishida T, Yasumaru M, Kanto T, Tsujii M, Tsuji S, Mizushima T, Yoshihara H, Kondo A, Miyoshi E, Hayashi N (2008) IgG oligosaccharide alterations are a novel diagnostic marker for disease activity and the clinical course of inflammatory bowel disease. Am J Gastroenterol 103(5):1173–1181. doi:10.1111/j.1572-0241.2007.01699.x

    PubMed  Google Scholar 

  19. Alavi A, Arden N, Spector TD, Axford JS (2000) Immunoglobulin G glycosylation and clinical outcome in rheumatoid arthritis during pregnancy. J Rheumatol 27(6):1379–1385

    PubMed  CAS  Google Scholar 

  20. van de Geijn FE, Wuhrer M, Selman MH, Willemsen SP, de Man YA, Deelder AM, Hazes JM, Dolhain RJ (2009) Immunoglobulin G galactosylation and sialylation are associated with pregnancy-induced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study. Arthr Res Ther 11(6):R193. doi:10.1186/ar2892

    Google Scholar 

  21. de Man YA, Dolhain RJ, van de Geijn FE, Willemsen SP, Hazes JM (2008) Disease activity of rheumatoid arthritis during pregnancy: results from a nationwide prospective study. Arthr Rheum 59(9):1241–1248. doi:10.1002/art.24003

    Google Scholar 

  22. Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS (2007) Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol 44(7):1524–1534. doi:10.1016/j.molimm.2006.09.005

    PubMed  CAS  Google Scholar 

  23. Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV (2008) Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320(5874):373–376. doi:10.1126/science.1154315

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Ballow M (2011) The IgG molecule as a biological immune response modifier: mechanisms of action of intravenous immune serum globulin in autoimmune and inflammatory disorders. J Allergy Clin Immunol 127(2):315–323; quiz 324–315. doi:10.1016/j.jaci.2010.10.030

    Google Scholar 

  25. Tha-In T, Metselaar HJ, Bushell AR, Kwekkeboom J, Wood KJ (2010) Intravenous immunoglobulins promote skin allograft acceptance by triggering functional activation of CD4+ Foxp3+ T cells. Transplantation 89(12):1446–1455. doi:10.1097/TP.0b013e3181dd6bf1

    PubMed  CAS  Google Scholar 

  26. Hirabayashi Y, Takahashi Y, Xu Y, Akane K, Villalobos IB, Okuno Y, Hasegawa S, Muramatsu H, Hama A, Kato T, Kojima S (2013) Lack of CD4(+)CD25 (+)FOXP3 (+) regulatory T cells is associated with resistance to intravenous immunoglobulin therapy in patients with Kawasaki disease. Eur J Pediatr. doi:10.1007/s00431-013-1937-3

  27. Costa N, Pires AE, Gabriel AM, Goulart LF, Pereira C, Leal B, Queiros AC, Chaara W, Moraes-Fontes MF, Vasconcelos C, Ferreira C, Martins J, Bastos M, Santos MJ, Pereira MA, Martins B, Lima M, Joao C, Six A, Demengeot J, Fesel C (2013) Broadened T-cell repertoire diversity in ivIg-treated SLE patients is also related to the individual status of regulatory T-cells. J Clin Immunol 33(2):349–360. doi:10.1007/s10875-012-9816-7

    PubMed  CAS  Google Scholar 

  28. Barreto M, Ferreira RC, Lourenco L, Moraes-Fontes MF, Santos E, Alves M, Carvalho C, Martins B, Andreia R, Viana JF, Vasconcelos C, Mota-Vieira L, Ferreira C, Demengeot J, Vicente AM (2009) Low frequency of CD4+ CD25+ Treg in SLE patients: a heritable trait associated with CTLA4 and TGFbeta gene variants. BMC Immunol 10:5. doi:10.1186/1471-2172-10-5

    PubMed  PubMed Central  Google Scholar 

  29. Tsurikisawa N, Saito H, Oshikata C, Tsuburai T, Akiyama K (2012) High-dose intravenous immunoglobulin treatment increases regulatory T cells in patients with eosinophilic granulomatosis with polyangiitis. J Rheumatol 39(5):1019–1025. doi:10.3899/jrheum.110981

    PubMed  CAS  Google Scholar 

  30. Chi LJ, Wang HB, Zhang Y, Wang WZ (2007) Abnormality of circulating CD4(+)CD25(+) regulatory T cell in patients with Guillain-Barre syndrome. J Neuroimmunol 192(1–2):206–214. doi:10.1016/j.jneuroim.2007.09.034

    PubMed  CAS  Google Scholar 

  31. Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE (2006) TNF downmodulates the function of human CD4+ CD25hi T-regulatory cells. Blood 108(1):253–261. doi:10.1182/blood-2005-11-4567

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Zhang X, Koldzic DN, Izikson L, Reddy J, Nazareno RF, Sakaguchi S, Kuchroo VK, Weiner HL (2004) IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25+ CD4+ regulatory T cells. Int Immunol 16(2):249–256

    PubMed  CAS  Google Scholar 

  33. Kessel A, Ammuri H, Peri R, Pavlotzky ER, Blank M, Shoenfeld Y, Toubi E (2007) Intravenous immunoglobulin therapy affects T regulatory cells by increasing their suppressive function. J Immunol 179(8):5571–5575

    PubMed  CAS  Google Scholar 

  34. Nimmerjahn F, Ravetch JV (2010) Antibody-mediated modulation of immune responses. Immunol Rev 236:265–275. doi:10.1111/j.1600-065X.2010.00910.x

    PubMed  CAS  Google Scholar 

  35. De Groot AS, Moise L, McMurry JA, Wambre E, Van Overtvelt L, Moingeon P, Scott DW, Martin W (2008) Activation of natural regulatory T cells by IgG Fc-derived peptide “Tregitopes”. Blood 112(8):3303–3311. doi:10.1182/blood-2008-02-138073

    PubMed  PubMed Central  Google Scholar 

  36. Massoud AH, Guay J, Shalaby KH, Bjur E, Ablona A, Chan D, Nouhi Y, McCusker CT, Mourad MW, Piccirillo CA, Mazer BD (2012) Intravenous immunoglobulin attenuates airway inflammation through induction of forkhead box protein 3-positive regulatory T cells. J Allergy Clin Immunol 129(6):1656–1665 e1653. doi:10.1016/j.jaci.2012.02.050

    Google Scholar 

  37. Oefner CM, Winkler A, Hess C, Lorenz AK, Holecska V, Huxdorf M, Schommartz T, Petzold D, Bitterling J, Schoen AL, Stoehr AD, Vu Van D, Darcan-Nikolaisen Y, Blanchard V, Schmudde I, Laumonnier Y, Strover HA, Hegazy AN, Eiglmeier S, Schoen CT, Mertes MM, Loddenkemper C, Lohning M, Konig P, Petersen A, Luger EO, Collin M, Kohl J, Hutloff A, Hamelmann E, Berger M, Wardemann H, Ehlers M (2012) Tolerance induction with T cell-dependent protein antigens induces regulatory sialylated IgGs. J Allergy Clin Immunol 129(6):1647–1655 e1613. doi:10.1016/j.jaci.2012.02.037

    Google Scholar 

  38. Sundblad A, Huetz F, Portnoi D, Coutinho A (1991) Stimulation of B and T cells by in vivo high dose immunoglobulin administration in normal mice. J Autoimmun 4(2):325–339

    PubMed  CAS  Google Scholar 

  39. Sigman K, Ghibu F, Sommerville W, Toledano BJ, Bastein Y, Cameron L, Hamid QA, Mazer B (1998) Intravenous immunoglobulin inhibits IgE production in human B lymphocytes. J Allergy Clin Immunol 102(3):421–427

    PubMed  CAS  Google Scholar 

  40. Zhuang Q, Mazer B (2001) Inhibition of IgE production in vitro by intact and fragmented intravenous immunoglobulin. J Allergy Clin Immunol 108(2):229–234. doi:10.1067/mai.2001.116291

    PubMed  CAS  Google Scholar 

  41. Neron S, Boire G, Dussault N, Racine C, de Brum-Fernandes AJ, Cote S, Jacques A (2009) CD40-activated B cells from patients with systemic lupus erythematosus can be modulated by therapeutic immunoglobulins in vitro. Arch Immunol Ther Exp (Warsz) 57(6):447–458. doi:10.1007/s00005-009-0048-3

    CAS  Google Scholar 

  42. de Grandmont MJ, Racine C, Roy A, Lemieux R, Neron S (2003) Intravenous immunoglobulins induce the in vitro differentiation of human B lymphocytes and the secretion of IgG. Blood 101(8):3065–3073. doi:10.1182/blood-2002-06-1684

    PubMed  Google Scholar 

  43. Ramos EJ, Pollinger HS, Stegall MD, Gloor JM, Dogan A, Grande JP (2007) The effect of desensitization protocols on human splenic B-cell populations in vivo. Am J Transplant 7(2):402–407. doi:10.1111/j.1600-6143.2006.01632.x

    PubMed  CAS  Google Scholar 

  44. Heidt S, Roelen DL, Eijsink C, Eikmans M, Claas FH, Mulder A (2009) Intravenous immunoglobulin preparations have no direct effect on B cell proliferation and immunoglobulin production. Clin Exp Immunol 158(1):99–105. doi:10.1111/j.1365-2249.2009.03996.x

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Afonso AB, Justo LN, Queiros AC, Fesel C, Cabral MS, da Silva MG, Porrata L, Markovic S, Pires AE, Joao C (2013) Treatment with low doses of polyclonal immunoglobulin improves B cell function during immune reconstitution in a murine model. J Clin Immunol 33(2):407–419. doi:10.1007/s10875-012-9802-0

    PubMed  CAS  Google Scholar 

  46. Paquin Proulx D, Aubin E, Lemieux R, Bazin R (2010) Inhibition of B cell-mediated antigen presentation by intravenous immunoglobulins (IVIg). Clin Immunol 135(3):422–429. doi:10.1016/j.clim.2010.01.001

    PubMed  CAS  Google Scholar 

  47. Proulx DP, Aubin E, Lemieux R, Bazin R (2009) Spontaneous internalization of IVIg in activated B cells. Immunol Lett 124(1):18–26. doi:10.1016/j.imlet.2009.03.012

    PubMed  CAS  Google Scholar 

  48. Dussault N, Ducas E, Racine C, Jacques A, Pare I, Cote S, Neron S (2008) Immunomodulation of human B cells following treatment with intravenous immunoglobulins involves increased phosphorylation of extracellular signal-regulated kinases 1 and 2. Int Immunol 20(11):1369–1379. doi:10.1093/intimm/dxn090

    PubMed  CAS  Google Scholar 

  49. Bayry J, Lacroix-Desmazes S, Carbonneil C, Misra N, Donkova V, Pashov A, Chevailler A, Mouthon L, Weill B, Bruneval P, Kazatchkine MD, Kaveri SV (2003) Inhibition of maturation and function of dendritic cells by intravenous immunoglobulin. Blood 101(2):758–765. doi:10.1182/blood-2002-05-1447

    PubMed  CAS  Google Scholar 

  50. Bayry J, Lacroix-Desmazes S, Delignat S, Mouthon L, Weill B, Kazatchkine MD, Kaveri SV (2003) Intravenous immunoglobulin abrogates dendritic cell differentiation induced by interferon-alpha present in serum from patients with systemic lupus erythematosus. Arthr Rheum 48(12):3497–3502. doi:10.1002/art.11346

    CAS  Google Scholar 

  51. Press R, Nennesmo I, Kouwenhoven M, Huang YM, Link H, Pashenkov M (2005) Dendritic cells in the cerebrospinal fluid and peripheral nerves in Guillain-Barre syndrome and chronic inflammatory demyelinating polyradiculoneuropathy. J Neuroimmunol 159(1–2):165–176. doi:10.1016/j.jneuroim.2004.09.020

    PubMed  CAS  Google Scholar 

  52. Ohkuma K, Sasaki T, Kamei S, Okuda S, Nakano H, Hamamoto T, Fujihara K, Nakashima I, Misu T, Itoyama Y (2007) Modulation of dendritic cell development by immunoglobulin G in control subjects and multiple sclerosis patients. Clin Exp Immunol 150(3):397–406. doi:10.1111/j.1365-2249.2007.03496.x

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Siragam V, Crow AR, Brinc D, Song S, Freedman J, Lazarus AH (2006) Intravenous immunoglobulin ameliorates ITP via activating Fc gamma receptors on dendritic cells. Nat Med 12(6):688–692. doi:10.1038/nm1416

    PubMed  CAS  Google Scholar 

  54. Huang HS, Sun DS, Lien TS, Chang HH (2010) Dendritic cells modulate platelet activity in IVIg-mediated amelioration of ITP in mice. Blood 116(23):5002–5009. doi:10.1182/blood-2010-03-275123

    PubMed  CAS  Google Scholar 

  55. Maddur MS, Hegde P, Sharma M, Kaveri SV, Bayry J (2011) B cells are resistant to immunomodulation by ‘IVIg-educated’ dendritic cells. Autoimmun Rev 11(2):154–156. doi:10.1016/j.autrev.2011.08.004

    PubMed  CAS  Google Scholar 

  56. Qian J, Zhu J, Wang M, Wu S, Chen T (2011) Suppressive effects of intravenous immunoglobulin (IVIG) on human umbilical cord blood immune cells. Pediatr Allergy Immunol 22(2):211–220. doi:10.1111/j.1399-3038.2010.01049.x

    PubMed  Google Scholar 

  57. Tha-In T, Metselaar HJ, Tilanus HW, Groothuismink ZM, Kuipers EJ, de Man RA, Kwekkeboom J (2007) Intravenous immunoglobulins suppress T-cell priming by modulating the bidirectional interaction between dendritic cells and natural killer cells. Blood 110(9):3253–3262. doi:10.1182/blood-2007-03-077057

    PubMed  CAS  Google Scholar 

  58. Abe J, Jibiki T, Noma S, Nakajima T, Saito H, Terai M (2005) Gene expression profiling of the effect of high-dose intravenous Ig in patients with Kawasaki disease. J Immunol 174(9):5837–5845

    PubMed  CAS  Google Scholar 

  59. Rhoades CJ, Williams MA, Kelsey SM, Newland AC (2000) Monocyte-macrophage system as targets for immunomodulation by intravenous immunoglobulin. Blood Rev 14(1):14–30. doi:10.1054/blre.1999.0121

    PubMed  CAS  Google Scholar 

  60. Ephrem A, Misra N, Hassan G, Dasgupta S, Delignat S, Duong Van Huyen JP, Chamat S, Prost F, Lacroix-Desmazes S, Kavery SV, Kazatchkine MD (2005) Immunomodulation of autoimmune and inflammatory diseases with intravenous immunoglobulin. Clin Exp Med 5(4):135–140. doi:10.1007/s10238-005-0079-y

    PubMed  CAS  Google Scholar 

  61. Kajii M, Suzuki C, Kashihara J, Kobayashi F, Kubo Y, Miyamoto H, Yuuki T, Yamamoto T, Nakae T (2011) Prevention of excessive collagen accumulation by human intravenous immunoglobulin treatment in a murine model of bleomycin-induced scleroderma. Clin Exp Immunol 163(2):235–241. doi:10.1111/j.1365-2249.2010.04295.x

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8(1):34–47. doi:10.1038/nri2206

    PubMed  CAS  Google Scholar 

  63. Nimmerjahn F, Ravetch JV (2006) Fcgamma receptors: old friends and new family members. Immunity 24(1):19–28. doi:10.1016/j.immuni.2005.11.010

    PubMed  CAS  Google Scholar 

  64. Kaneko Y, Nimmerjahn F, Madaio MP, Ravetch JV (2006) Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. J Exp Med 203(3):789–797. doi:10.1084/jem.20051900

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Tackenberg B, Jelcic I, Baerenwaldt A, Oertel WH, Sommer N, Nimmerjahn F, Lunemann JD (2009) Impaired inhibitory Fcgamma receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. Proc Natl Acad Sci USA 106(12):4788–4792. doi:10.1073/pnas.0807319106

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Shimomura M, Hasegawa S, Seki Y, Fukano R, Hotta N, Ichiyama T (2012) Intravenous immunoglobulin does not increase FcgammaRIIB expression levels on monocytes in children with immune thrombocytopenia. Clin Exp Immunol 169(1):33–37. doi:10.1111/j.1365-2249.2012.04591.x

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Brownlie RJ, Lawlor KE, Niederer HA, Cutler AJ, Xiang Z, Clatworthy MR, Floto RA, Greaves DR, Lyons PA, Smith KG (2008) Distinct cell-specific control of autoimmunity and infection by FcgammaRIIb. J Exp Med 205(4):883–895. doi:10.1084/jem.20072565

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Kraal G, Mebius R (2006) New insights into the cell biology of the marginal zone of the spleen. Int Rev Cytol 250:175–215. doi:10.1016/S0074-7696(06)50005-1

    PubMed  CAS  Google Scholar 

  69. Anthony RM, Wermeling F, Karlsson MC, Ravetch JV (2008) Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci USA 105(50):19571–19578. doi:10.1073/pnas.0810163105

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Schwab I, Biburger M, Kronke G, Schett G, Nimmerjahn F (2012) IVIg-mediated amelioration of ITP in mice is dependent on sialic acid and SIGNR1. Eur J Immunol 42(4):826–830. doi:10.1002/eji.201142260

    PubMed  CAS  Google Scholar 

  71. Leontyev D, Katsman Y, Branch DR (2012) Mouse background and IVIG dosage are critical in establishing the role of inhibitory Fcgamma receptor for the amelioration of experimental ITP. Blood 119(22):5261–5264. doi:10.1182/blood-2012-03-415695

    PubMed  CAS  Google Scholar 

  72. Kang YS, Kim JY, Bruening SA, Pack M, Charalambous A, Pritsker A, Moran TM, Loeffler JM, Steinman RM, Park CG (2004) The C-type lectin SIGN-R1 mediates uptake of the capsular polysaccharide of Streptococcus pneumoniae in the marginal zone of mouse spleen. Proc Natl Acad Sci USA 101(1):215–220. doi:10.1073/pnas.0307124101

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Kang YS, Yamazaki S, Iyoda T, Pack M, Bruening SA, Kim JY, Takahara K, Inaba K, Steinman RM, Park CG (2003) SIGN-R1, a novel C-type lectin expressed by marginal zone macrophages in spleen, mediates uptake of the polysaccharide dextran. Int Immunol 15(2):177–186

    PubMed  CAS  Google Scholar 

  74. Gonzalez SF, Lukacs-Kornek V, Kuligowski MP, Pitcher LA, Degn SE, Kim YA, Cloninger MJ, Martinez-Pomares L, Gordon S, Turley SJ, Carroll MC (2010) Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nat Immunol 11(5):427–434. doi:10.1038/ni.1856

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Anthony RM, Kobayashi T, Wermeling F, Ravetch JV (2011) Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway. Nature 475(7354):110–113. doi:10.1038/nature10134

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Bergman MP, Engering A, Smits HH, van Vliet SJ, van Bodegraven AA, Wirth HP, Kapsenberg ML, Vandenbroucke-Grauls CM, van Kooyk Y, Appelmelk BJ (2004) Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN. J Exp Med 200(8):979–990. doi:10.1084/jem.20041061

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Smits HH, Engering A, van der Kleij D, de Jong EC, Schipper K, van Capel TM, Zaat BA, Yazdanbakhsh M, Wierenga EA, van Kooyk Y, Kapsenberg ML (2005) Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol 115(6):1260–1267. doi:10.1016/j.jaci.2005.03.036

    PubMed  CAS  Google Scholar 

  78. Steeghs L, van Vliet SJ, Uronen-Hansson H, van Mourik A, Engering A, Sanchez-Hernandez M, Klein N, Callard R, van Putten JP, van der Ley P, van Kooyk Y, van de Winkel JG (2006) Neisseria meningitidis expressing lgtB lipopolysaccharide targets DC-SIGN and modulates dendritic cell function. Cell Microbiol 8(2):316–325. doi:10.1111/j.1462-5822.2005.00623.x

    PubMed  CAS  Google Scholar 

  79. Geijtenbeek TB, Van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM, Appelmelk B, Van Kooyk Y (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197(1):7–17

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Gringhuis SI, den Dunnen J, Litjens M, van Het Hof B, van Kooyk Y, Geijtenbeek TB (2007) C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity 26(5):605–616. doi:10.1016/j.immuni.2007.03.012

    PubMed  CAS  Google Scholar 

  81. Bashirova AA, Geijtenbeek TB, van Duijnhoven GC, van Vliet SJ, Eilering JB, Martin MP, Wu L, Martin TD, Viebig N, Knolle PA, KewalRamani VN, van Kooyk Y, Carrington M (2001) A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. J Exp Med 193(6):671–678

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Yu X, Vasiljevic S, Mitchell DA, Crispin M, Scanlan CN (2013) Dissecting the molecular mechanism of IVIg therapy: the interaction between serum IgG and DC-SIGN is independent of antibody glycoform or Fc domain. J Mol Biol 425(8):1253–1258. doi:10.1016/j.jmb.2013.02.006

    PubMed  CAS  Google Scholar 

  83. Courtney AH, Puffer EB, Pontrello JK, Yang ZQ, Kiessling LL (2009) Sialylated multivalent antigens engage CD22 in trans and inhibit B cell activation. Proc Natl Acad Sci USA 106(8):2500–2505. doi:10.1073/pnas.0807207106

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Cyster JG, Goodnow CC (1997) Tuning antigen receptor signaling by CD22: integrating cues from antigens and the microenvironment. Immunity 6(5):509–517

    PubMed  CAS  Google Scholar 

  85. Jin L, McLean PA, Neel BG, Wortis HH (2002) Sialic acid binding domains of CD22 are required for negative regulation of B cell receptor signaling. J Exp Med 195(9):1199–1205

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Sullivan-Chang L, O’Donnell RT, Tuscano JM (2013) Targeting CD22 in B-cell malignancies: current status and clinical outlook. Biodrugs 27(4):293–304. doi:10.1007/s40259-013-0016-7

    PubMed  CAS  Google Scholar 

  87. Seite JF, Cornec D, Renaudineau Y, Youinou P, Mageed RA, Hillion S (2010) IVIg modulates BCR signaling through CD22 and promotes apoptosis in mature human B lymphocytes. Blood 116(10):1698–1704. doi:10.1182/blood-2009-12-261461

    PubMed  CAS  Google Scholar 

  88. Hu C, Wong FS, Wen L (2009) Translational mini-review series on B cell-directed therapies: B cell-directed therapy for autoimmune diseases. Clin Exp Immunol 157(2):181–190. doi:10.1111/j.1365-2249.2009.03977.x

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Schwab I, Seeling M, Biburger M, Aschermann S, Nitschke L, Nimmerjahn F (2012) B cells and CD22 are dispensable for the immediate antiinflammatory activity of intravenous immunoglobulins in vivo. Eur J Immunol 42(12):3302–3309. doi:10.1002/eji.201242710

    PubMed  CAS  Google Scholar 

  90. Gill V, Doig C, Knight D, Love E, Kubes P (2005) Targeting adhesion molecules as a potential mechanism of action for intravenous immunoglobulin. Circulation 112(13):2031–2039. doi:10.1161/CIRCULATIONAHA.105.546150

    PubMed  CAS  Google Scholar 

  91. Qiu Y, Wu J, Fang XY, Lin Z, Wu BY, Cai RY, Xu XY, Zheng H (2004) Changes of P-selectin and E-selectin in children with Kawasaki disease. Zhonghua Er Ke Za Zhi 42(9):688–692

    PubMed  Google Scholar 

  92. Ichiyama T, Ueno Y, Isumi H, Niimi A, Matsubara T, Furukawa S (2004) An immunoglobulin agent (IVIG) inhibits NF-kappaB activation in cultured endothelial cells of coronary arteries in vitro. Inflamm Res 53(6):253–256. doi:10.1007/s00011-004-1255-3

    PubMed  CAS  Google Scholar 

  93. Stadlmann J, Weber A, Pabst M, Anderle H, Kunert R, Ehrlich HJ, Schwarz HP, Altmann F (2009) A close look at human IgG sialylation and subclass distribution after lectin fractionation. Proteomics 9(17):4143–4153. doi:10.1002/pmic.200800931

    PubMed  CAS  Google Scholar 

  94. Huang W, Giddens J, Fan SQ, Toonstra C, Wang LX (2012) Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions. J Am Chem Soc 134(29):12308–12318. doi:10.1021/ja3051266

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Nandakumar KS, Collin M, Happonen KE, Croxford AM, Lundstrom SL, Zubarev RA, Rowley MJ, Blom AM, Holmdahl R (2013) Dominant suppression of inflammation by glycan-hydrolyzed IgG. Proc Natl Acad Sci USA 110(25):10252–10257. doi:10.1073/pnas.1301480110

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Asquith DL, Miller AM, McInnes IB, Liew FY (2009) Animal models of rheumatoid arthritis. Eur J Immunol 39(8):2040–2044. doi:10.1002/eji.200939578

    PubMed  CAS  Google Scholar 

  97. Phillips WJ, Smith DJ, Bona CA, Bot A, Zaghouani H (2005) Recombinant immunoglobulin-based epitope delivery: a novel class of autoimmune regulators. Int Rev Immunol 24(5–6):501–517. doi:10.1080/08830180500379648

    PubMed  CAS  Google Scholar 

  98. Zambidis ET, Scott DW (1996) Epitope-specific tolerance induction with an engineered immunoglobulin. Proc Natl Acad Sci USA 93(10):5019–5024

    PubMed  CAS  PubMed Central  Google Scholar 

  99. van der Marel S, Majowicz A, Kwikkers K, van Logtenstein R, te Velde AA, De Groot AS, Meijer SL, van Deventer SJ, Petry H, Hommes DW, Ferreira V (2012) Adeno-associated virus mediated delivery of Tregitope 167 ameliorates experimental colitis. World J Gastroenterol 18(32):4288–4299. doi:10.3748/wjg.v18.i32.4288

    PubMed  PubMed Central  Google Scholar 

  100. Appelmelk BJ, van Die I, van Vliet SJ, Vandenbroucke-Grauls CM, Geijtenbeek TB, van Kooyk Y (2003) Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J Immunol 170(4):1635–1639

    PubMed  CAS  Google Scholar 

  101. Mitchell DA, Fadden AJ, Drickamer K (2001) A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands. J Biol Chem 276(31):28939–28945. doi:10.1074/jbc.M104565200

    PubMed  CAS  Google Scholar 

  102. Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223. doi:10.1016/j.yexmp.2008.12.004

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160. doi:10.1038/nrd1632

    PubMed  CAS  Google Scholar 

  104. Torrelles JB, Azad AK, Schlesinger LS (2006) Fine discrimination in the recognition of individual species of phosphatidyl-myo-inositol mannosides from Mycobacterium tuberculosis by C-type lectin pattern recognition receptors. J Immunol 177(3):1805–1816

    PubMed  CAS  Google Scholar 

  105. Cruz LJ, Tacken PJ, Fokkink R, Joosten B, Stuart MC, Albericio F, Torensma R, Figdor CG (2010) Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release 144(2):118–126. doi:10.1016/j.jconrel.2010.02.013

    PubMed  CAS  Google Scholar 

  106. Unger WW, van Beelen AJ, Bruijns SC, Joshi M, Fehres CM, van Bloois L, Verstege MI, Ambrosini M, Kalay H, Nazmi K, Bolscher JG, Hooijberg E, de Gruijl TD, Storm G, van Kooyk Y (2012) Glycan-modified liposomes boost CD4+ and CD8+ T-cell responses by targeting DC-SIGN on dendritic cells. J Control Release 160(1):88–95. doi:10.1016/j.jconrel.2012.02.007

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Mid-career Researcher Program through NRF grant funded by the MEST (Y.-S. Kang, R01-2008-000-20803-0) and a grant from the Next-Generation BioGreen 21 Program (Y.-S. Kang, PJ009062).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Sun Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabagar, M.G., Choi, Hj., Park, JY. et al. Intravenous immunoglobulin-mediated immunosuppression and the development of an IVIG substitute. Clin Exp Med 14, 361–373 (2014). https://doi.org/10.1007/s10238-013-0255-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-013-0255-4

Keywords

Navigation