Skip to main content
Log in

Bone marrow mesenchymal stromal cells remain of recipient origin after allogeneic SCT and do not harbor the JAK2V617F mutation in patients with myelofibrosis

  • Short Communication
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

The close association of the myeloproliferative neoplasms with the activating non-receptor tyrosine kinase JAK2V617F mutation is well established. To further clarify the pathomechanisms of this mutation in patients with myelofibrosis, we performed screening with quantitative real-time PCR for the respective mutation in in vitro expanded bone marrow (BM) mesenchymal stromal cells (MSCs) and compared the results with BM/peripheral blood (PB). Eight patients with primary/secondary myelofibrosis were investigated before (n = 4) or after allogeneic stem cell transplantation (n = 4). All patients had systemic evidence of the JAK2V617F mutation in BM/PB (mutation ratios 0.2–23.5) at the time of investigation in contrast to negative results in the MSCs (n = 7) or a very low (0.004) mutation ratio (n = 1) which was probably due to hematopoietic contamination. The four patients post-transplant had systemic donor chimerism between 96.5 and 100% in BM/PB, while MSCs showed no evidence of donor-specific alleles. In conclusion, in myelofibrosis, the JAK2V617F mutation is restricted to hematopoietic cells, and cannot explain the stromal alterations being observed in this disorder. Further, the MSCs remain of recipient origin after allogeneic SCT, which might contribute to the increased risk of graft dysfunction or failure in myelofibrosis patients after allogeneic transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tefferi A, Lasho TL, Gilliland G (2005) JAK2 mutations in myeloproliferative disorders. N Engl J Med 353(13):1416–1417

    Article  CAS  PubMed  Google Scholar 

  2. Oppliger LE, Horn MP, Brunold C, Pfanner-Meyer B, Marti D, Hirsiger H et al (2006) Hematopoietic and endothelial progenitor cell trafficking in patients with myeloproliferative diseases. Haematologica 91(11):1465–1472

    Google Scholar 

  3. Lange C, Kaltz C, Thalmeier K, Kolb HJ, Huss R (1999) Hematopoietic reconstitution of syngeneic mice with a peripheral blood-derived, monoclonal CD34−, Sca-1+, Thy-1(low), c-kit+ stem cell line. J Hematother Stem Cell Res 8(4):335–342

    Article  CAS  PubMed  Google Scholar 

  4. Mercier F, Monczak Y, Francois M, Prchal J, Galipeau J (2009) Bone marrow mesenchymal stromal cells of patients with myeloproliferative disorders do not carry the JAK2-V617F mutation. Exp Hematol 37(3):416–420

    Article  CAS  PubMed  Google Scholar 

  5. Pieri L, Guglielmelli P, Bogani C, Bosi A, Vannucchi AM (2008) Mesenchymal stem cells from JAK2(V617F) mutant patients with primary myelofibrosis do not harbor JAK2 mutant allele. Leuk Res 32(3):516–517

    Article  CAS  PubMed  Google Scholar 

  6. Lange C, Cakiroglu F, Spiess AN, Cappallo-Obermann H, Dierlamm J, Zander AR (2007) Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol 213(1):18–26

    Article  CAS  PubMed  Google Scholar 

  7. Kroger N, Badbaran A, Holler E, Hahn J, Kobbe G, Bornhauser M et al (2007) Monitoring of the JAK2-V617F mutation by highly sensitive quantitative real-time PCR after allogeneic stem cell transplantation in patients with myelofibrosis. Blood 109(3):1316–1321

    Article  PubMed  Google Scholar 

  8. Fehse B, Chukhlovin A, Kuhlcke K, Marinetz O, Vorwig O, Renges H et al (2001) Real-time quantitative Y chromosome-specific PCR (QYCS-PCR) for monitoring hematopoietic chimerism after sex-mismatched allogeneic stem cell transplantation. J Hematother Stem Cell Res 10(3):419–425

    Article  CAS  PubMed  Google Scholar 

  9. Alizadeh M, Bernard M, Danic B, Dauriac C, Birebent B, Lapart C et al (2002) Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quantitative polymerase chain reaction. Blood 99(12):4618–4625

    Article  CAS  PubMed  Google Scholar 

  10. Carrara RC, Orellana MD, Fontes AM, Palma PV, Kashima S, Mendes MR et al (2007) Mesenchymal stem cells from patients with chronic myeloid leukemia do not express BCR-ABL and have absence of chimerism after allogeneic bone marrow transplant. Braz J Med Biol Res 40(1):57–67

    CAS  PubMed  Google Scholar 

  11. Zhao Z, Tang X, You Y, Li W, Liu F, Zou P (2006) Assessment of bone marrow mesenchymal stem cell biological characteristics and support hematopoiesis function in patients with chronic myeloid leukemia. Leuk Res 30(8):993–1003

    Article  CAS  PubMed  Google Scholar 

  12. Jootar S, Pornprasertsud N, Petvises S, Rerkamnuaychoke B, Disthabanchong S, Pakakasama S et al (2006) Bone marrow derived mesenchymal stem cells from chronic myeloid leukemia t(9;22) patients are devoid of Philadelphia chromosome and support cord blood stem cell expansion. Leuk Res 30(12):1493–1498

    Article  CAS  PubMed  Google Scholar 

  13. Wohrer S, Rabitsch W, Shehata M, Kondo R, Esterbauer H, Streubel B et al (2007) Mesenchymal stem cells in patients with chronic myelogenous leukaemia or bi-phenotypic Ph+ acute leukaemia are not related to the leukaemic clone. Anticancer Res 27(6B):3837–3841

    CAS  PubMed  Google Scholar 

  14. Blau O, Hofmann WK, Baldus CD, Thiel G, Serbent V, Schumann E et al (2007) Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol 35(2):221–229

    Article  CAS  PubMed  Google Scholar 

  15. Soenen-Cornu V, Tourino C, Bonnet ML, Guillier M, Flamant S, Kotb R et al (2005) Mesenchymal cells generated from patients with myelodysplastic syndromes are devoid of chromosomal clonal markers and support short- and long-term hematopoiesis in vitro. Oncogene 24(15):2441–2448

    Article  CAS  PubMed  Google Scholar 

  16. Thiele J, Varus E, Siebolts U, Kvasnicka HM, Wickenhauser C, Metz KA et al (2007) Dualism of mixed chimerism between hematopoiesis and stroma in chronic idiopathic myelofibrosis after allogeneic stem cell transplantation. Histol Histopathol 22(4):365–372

    CAS  PubMed  Google Scholar 

  17. Stute N, Fehse B, Schroder J, Arps S, Adamietz P, Held KR, Zander AR (2002) Human mesenchymal stem cells are not of donor origin in patients with severe aplastic anemia who underwent sex-mismatched allogeneic bone marrow transplant. J Hematother Stem Cell Res 11(6):977–984

    Article  PubMed  Google Scholar 

  18. Bartsch K, Al-Ali H, Reinhardt A, Franke C, Hudecek M, Kamprad M et al (2009) Mesenchymal stem cells remain host-derived independent of the source of the stem-cell graft and conditioning regimen used. Transplantation 87(2):217–221

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Silke Zeschke, Ulrike Larsen, and Sandra Hannemann from the department’s laboratory for excellent technical assistance. Haefaa Alchalby is supported by an EBMT-AMGEN fellowship.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Bacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacher, U., Asenova, S., Badbaran, A. et al. Bone marrow mesenchymal stromal cells remain of recipient origin after allogeneic SCT and do not harbor the JAK2V617F mutation in patients with myelofibrosis. Clin Exp Med 10, 205–208 (2010). https://doi.org/10.1007/s10238-009-0058-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-009-0058-9

Keywords

Navigation