Skip to main content
Log in

Free vibration analysis of microtubules based on the molecular mechanics and continuum beam theory

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

A molecular structural mechanics (MSM) method has been implemented to investigate the free vibration of microtubules (MTs). The emphasis is placed on the effects of the configuration and the imperfect boundaries of MTs. It is shown that the influence of protofilament number on the fundamental frequency is strong, while the effect of helix-start number is almost negligible. The fundamental frequency is also found to decrease as the number of the blocked filaments at boundaries decreases. Subsequently, the Euler–Bernoulli beam theory is employed to reveal the physics behind the simulation results. Fitting the Euler–Bernoulli beam into the MSM data leads to an explicit formula for the fundamental frequency of MTs with various configurations and identifies a possible correlation between the imperfect boundary conditions and the length-dependent bending stiffness of MTs reported in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Behrens S, Wu J, Habicht W, Unger E (2004) Silver nanoparticle and nanowire formation by microtubule templates. Chem Mater 16:3085–3090

    Article  Google Scholar 

  • Brangwynne CP, Koenderink GH, Barry E, Dogic Z, MacKintosh FC, Weitz DA (2007) Bending dynamics of fluctuating biopolymers probed by automated high-resolution filament tracking. Biophys J 93:346–359

    Article  Google Scholar 

  • Chandran PL, Mofrad MRK (2009) Rods-on-string idealization captures semiflexible filament dynamics. Phys Rev E 79:011906

    Article  MathSciNet  Google Scholar 

  • Chrétien D, Fuller SD (2000) Microtubules switch occasionally into unfavorable configurations during elongation. J Mol Biol 298:663–676

    Article  Google Scholar 

  • Chrétien D, Wade RH (1991) New data on the microtubule surface lattice. Biol Cell 71:161–174

    Article  Google Scholar 

  • Cifra M, Pokorný J, Havelka D, Kucera O (2010) Electric field generated by axial longitudinal vibration modes of microtubule. BioSyst 100:122–131

    Article  Google Scholar 

  • Daneshmand F, Amabili M (2012) Coupled oscillations of a protein microtubule immersed in cytoplasm: an orthotropic elastic shell modeling. J Biol Phys 38:429–448

    Article  Google Scholar 

  • Deriu MA, Soncini M, Orsi M, Patel M, Essex JW, Montevecchi FM, Redaelli A (2010) Anisotropic elastic network modeling of entire microtubules. Biophys J 99:2190–2199

    Article  Google Scholar 

  • Enemark S, Deriu MA, Soncini M, Redaelli A (2008) Mechanical model of the tubulin dimer based on molecular dynamics simulations. J Biomech Eng 130:041008

    Article  Google Scholar 

  • Gao YW, Lei FM (2009) Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory. Biochem Biophys Res Commun 387:467–471

    Article  Google Scholar 

  • Havelka D, Cifra M, Kučera O (2014) Multi-mode electro-mechanical vibrations of a microtubule: In silico demonstration of electric pulse moving along a microtubule. Appl Phys Lett 104:243702

    Article  Google Scholar 

  • Hawkins TL, Mirigian M, Li J, YasarMS SDL, Sept D, Ross JL (2012) Perturbations in microtubule mechanics from tubulin preparation. Cell Mol Bioeng 5:227–238

    Article  Google Scholar 

  • Hawkins TL, Sept D, Mogessie B, Straube A, Ross JL (2013) Mechanical properties of doubly stabilized microtubule filaments. Biophys J 104:1517–1528

    Article  Google Scholar 

  • Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sunderland, MA

    Google Scholar 

  • Howard J, Hyman AA (2003) Dynamics and mechanics of the microtubule plus end. Nature 422:753–758

    Article  Google Scholar 

  • Hunyadi V, Chrétien D, Janosi IM (2005) Mechanical stress induced mechanism of microtubule catastrophes. J Mol Biol 348:927–938

    Article  Google Scholar 

  • Ji XY, Feng XQ (2011a) Coarse-grained mechanochemical model for simulating the dynamic behavior of microtubules. Phys Rev E 84:031933

    Article  Google Scholar 

  • Ji XY, Feng XQ (2011b) Mechanochemical modeling of dynamic microtubule growth involving sheet-to-tube transition. PLoS ONE 6:e29049

    Article  Google Scholar 

  • Jin MZ, Ru CQ (2014) Localized vibration of a microtubule surrounded by randomly distributed cross linkers. J Biomech Eng 136:071002

    Article  Google Scholar 

  • Kasas S, Cibert C, Kis A, Rios PDL, Riederer BM, Forro L, Dietler G, Catsicas S (2004a) Oscillation modes of microtubules. Biol Cell 96:697–700

    Article  Google Scholar 

  • Kasas S, Kis A, Riederer BM, Forro L, Dietler G, Catsicas S (2004b) Mechanical properties of microtubules explored using the finite elements method. Chem Phys Chem 5:252–257

    Google Scholar 

  • Kawaguchi K, Yamaguchi A (2010) Temperature dependence rigidity of non-taxol stabilized single microtubules. Biochem Biophys Res Commun 402:66–69

    Article  Google Scholar 

  • Kis A, Kasas S, Babić B, Kulik AJ, Benoît SW, Briggs GAD, Schönenberger C, Catsicas S, Forró L (2002) Nanomechanics of microtubules. Phys Rev Lett 89:248101

    Article  Google Scholar 

  • Kis A, Kasas S, Kulik AJ, Catsicas S, Forró L (2008) Temperature-dependent elasticity of microtubules. Langmuir 24:6176–6181

    Article  Google Scholar 

  • Meurer-Grob P, Kasparian J, Wade RH (2001) Microtubule structure at improved resolution. Biochemistry 40:8000–8008

    Article  Google Scholar 

  • Pampaloni F, Lattanzi G, Jonas A, Surrey T, Frey E, Florin EL (2006) Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. Proc Natl Acad Sci USA 103:10248–10253

    Article  Google Scholar 

  • Pokorný J, Jelínek F, Trkal V, Lamprecht I, Holzel R (1997) Vibrations in microtubules. Astrophy Space Sci 23:171–179

    Google Scholar 

  • Pokorný J, Vedruccio C, Cifra M, Kučera O (2011) Cancer physics: diagnostics based on damped cellular elastoelectrical vibrations in microtubules. Eur Biophys J 40:747–759

    Article  Google Scholar 

  • Rappé AK, Casewit CJ, Colwell KS, Goddard Iii WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035

    Article  Google Scholar 

  • Samarbakhsh A, Tuszynski JA (2011) Vibrational dynamics of bio- and nano-filaments in viscous solution subjected to ultrasound: implications for microtubules. Eur Biophys J 40:937–946

    Article  Google Scholar 

  • Sept D, MacKintosh FC (2010) Microtubule elasticity: connecting all-atom simulations with continuum mechanics. Phys Rev Lett 104:018101

  • Shen HS (2010) Nonlocal shear deformable shell model for postbuckling of axially compressed microtubules embedded in an elastic medium. Biomech Model Mechanobiol 9:345–357

    Article  Google Scholar 

  • Shen HS (2011) Nonlinear vibration of microtubules in living cells. Curr Appl Phys 11:812–821

    Article  Google Scholar 

  • Shi YJ, Guo WL, Ru CQ (2008) Relevance of Timoshenko-beam model to microtubules of low shear modulus. Phys E 41:213–219

    Article  Google Scholar 

  • Sim H, Sept D (2013) Properties of microtubules with isotropic and anisotropic mechanics. Cell Mol Bioeng 6:361–368

    Article  Google Scholar 

  • Taj M, Zhang JQ (2012) Analysis of vibrational behaviors of microtubules embedded within elastic medium by Pasternak model. Biochem Biophys Res Commun 424:89–93

    Article  Google Scholar 

  • Taute KM, Pampaloni F, Frey E, Florin EL (2008) Microtubule dynamics depart from the wormlike chain model. Phys Rev Lett 100:028102

    Article  Google Scholar 

  • Valdman D, Atzberger PJ, Yu D, Kuei S, Valentine MT (2012) Spectral analysis methods for the robust measurement of the flexural rigidity of biopolymers. Biophys J 102:1144–1153

    Article  Google Scholar 

  • Venier P, Maggs AC, Carlier MF, Pantaloni D (1994) Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuation. J Biol Chem 269:13353–13360

    Google Scholar 

  • Wade RH (2009) On and around microtubules: an overview. Mol Biotechnol 43:177–191

    Article  Google Scholar 

  • Wang CY, Ru CQ, Mioduchowski A (2006) Vibration of microtubules as orthotropic elastic shells. Phys E 35:48–56

    Article  Google Scholar 

  • Wang CY, Li CF, Adhikari S (2009) Dynamic behaviors of microtubules in cytosol. J Biomech 42:1270–1274

    Article  Google Scholar 

  • Wang CY, Zhang LC (2008) Circumferential vibration of microtubules with long axial wavelength. J Biomech 41:1892–1896

    Article  Google Scholar 

  • Weaver W Jr, Timoshenko S, Young DH (1990) Vibration problems in engineering, 5th edn. Wiley, New York

    Google Scholar 

  • Weaver W Jr, Gere JM (1990) Matrix analysis of framed structures, 3rd edn. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  • Zhang J, Meguid SA (2014) Buckling of microtubules: An insight by molecular and continuum mechanics. Appl Phys Lett 105:173704

    Article  Google Scholar 

  • Zhang J, Wang CY (2014) Molecular structural mechanics model for the mechanical properties of microtubules. Biomech Model Mechanobiol 13:1175–1184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyuan Wang.

Appendix

Appendix

The vibration solution to Eq. 8 can be found using the method of separation of variables as

$$\begin{aligned} w(x,t)=W(x)\cdot T(t). \end{aligned}$$
(14)

Substituting Eq. 14 into Eq. 8 and rearranging yield

$$\begin{aligned} \frac{{\hbox {d}}^{2}T(t)}{{\hbox {d}}t^{2}}\frac{1}{T(t)}=-\frac{D}{\rho }\frac{{\hbox {d}}^{4}W(x)}{{\hbox {d}}x^{4}}\frac{1}{W(x)}. \end{aligned}$$
(15)

It is noted that the left term in Eq. 15 is independent with x, and the right term is independent with t. Thus, they should be equal to a constant, which is noted as \(-\omega ^{2}\). Here, \(\omega \) is known as the angular frequency \((f=\omega /2\pi )\).

Thus, Eq. 15 can be written as

$$\begin{aligned}&\frac{d^{2}T(t)}{{\hbox {d}}t^{2}}+\omega ^{2}T(t)=0, \end{aligned}$$
(16)
$$\begin{aligned}&\frac{d^{4}W(x)}{{\hbox {d}}x^{4}}-\tau ^{4}W(x)=0, \end{aligned}$$
(17)

where \(\tau ^{4}=\rho \omega ^{2}/D\).

The solution of Eq. 17 is given by

$$\begin{aligned} W(x)= & {} C_{1}\cos (\tau x)+C_2 \sin (\tau x)\nonumber \\&+C_3 \cosh (\tau x)+C_4 \sinh (\tau x), \end{aligned}$$
(18)

where \(C_{1}-C_{4}\) are constants. The constants \(C_{1}-C_{4}\) and \(\tau \) can be found from the boundary conditions. For the CM model of the MTs considered here, the boundary conditions can be stated as

$$\begin{aligned}&W(0)=0; \; D\frac{d^{2}W(0)}{dx^{2}}=k\frac{dW(0)}{{\hbox {d}}x}; \;\nonumber \\&\frac{d^{2}W(L)}{{\hbox {d}}x^{2}}=0; \;\frac{d^{3}W(L)}{{\hbox {d}}x^{3}}=0. \end{aligned}$$
(19)

Applying the above boundary conditions to Eq. 18 yields

$$\begin{aligned}&C_1 +C_{3}=0, \end{aligned}$$
(20)
$$\begin{aligned}&C_1 -C_3=-\frac{k}{D\tau }\left( {C_2 +C_4 } \right) , \end{aligned}$$
(21)
$$\begin{aligned}&C_1 \cos (\tau L)+C_2 \sin (\tau L)\nonumber \\&\quad +C_3 \cosh (\tau L)+C_4 \sinh (\tau L)=0, \end{aligned}$$
(22)
$$\begin{aligned}&-C_1 \sin (\tau L)+C_2 \cos (\tau L)-C_3 \sinh (\tau L)\nonumber \\&\quad +C_4 \cosh (\tau L)=0. \end{aligned}$$
(23)

Thus, we can get following characteristic equation

$$\begin{aligned}&\cos (\tau L)\cdot \cosh (\tau L)+1=\frac{D\tau }{k}[\sinh (\tau L)\cdot \cos (\tau L)\nonumber \\&\quad -\sin (\tau L)\cdot \cosh (\tau L)]. \end{aligned}$$
(24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, C. Free vibration analysis of microtubules based on the molecular mechanics and continuum beam theory. Biomech Model Mechanobiol 15, 1069–1078 (2016). https://doi.org/10.1007/s10237-015-0744-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-015-0744-3

Keywords

Navigation