Skip to main content
Log in

Specimen-specific predictions of contact stress under physiological loading in the human hip: validation and sensitivity studies

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Hip osteoarthritis may be initiated and advanced by abnormal cartilage contact mechanics, and finite element (FE) modeling provides an approach with the potential to allow the study of this process. Previous FE models of the human hip have been limited by single specimen validation and the use of quasi-linear or linear elastic constitutive models of articular cartilage. The effects of the latter assumptions on model predictions are unknown, partially because data for the instantaneous behavior of healthy human hip cartilage are unavailable. The aims of this study were to develop and validate a series of specimen-specific FE models, to characterize the regional instantaneous response of healthy human hip cartilage in compression, and to assess the effects of material nonlinearity, inhomogeneity and specimen-specific material coefficients on FE predictions of cartilage contact stress and contact area. Five cadaveric specimens underwent experimental loading, cartilage material characterization and specimen-specific FE modeling. Cartilage in the FE models was represented by average neo-Hookean, average Veronda Westmann and specimen- and region-specific Veronda Westmann hyperelastic constitutive models. Experimental measurements and FE predictions compared well for all three cartilage representations, which was reflected in average RMS errors in contact stress of less than 25 %. The instantaneous material behavior of healthy human hip cartilage varied spatially, with stiffer acetabular cartilage than femoral cartilage and stiffer cartilage in lateral regions than in medial regions. The Veronda Westmann constitutive model with average material coefficients accurately predicted peak contact stress, average contact stress, contact area and contact patterns. The use of subject- and region-specific material coefficients did not increase the accuracy of FE model predictions. The neo-Hookean constitutive model underpredicted peak contact stress in areas of high stress. The results of this study support the use of average cartilage material coefficients in predictions of cartilage contact stress and contact area in the normal hip. The regional characterization of cartilage material behavior provides the necessary inputs for future computational studies, to investigate other mechanical parameters that may be correlated with OA and cartilage damage in the human hip. In the future, the results of this study can be applied to subject-specific models to better understand how abnormal hip contact stress and contact area contribute to OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abraham CL, Maas SA, Weiss JA, Ellis BJ, Peters CL, Anderson AE (2013) A new discrete element analysis method for predicting hip joint contact stresses. J Biomech 46(6):1121–1127. doi:10.1016/j.jbiomech.2013.01.012

    Article  Google Scholar 

  • Adams D, Swanson SA (1985) Direct measurement of local pressures in the cadaveric human hip joint during simulated level walking. Ann Rheum Dis 44(10):658–666

    Article  Google Scholar 

  • Afoke NY, Byers PD, Hutton WC (1987) Contact pressures in the human hip joint. J Bone Joint Surg Br 69(4):536–541

    Google Scholar 

  • Akizuki S, Mow VC, Muller F, Pita JC, Howell DS, Manicourt DH (1986) Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J Orthop Res 4(4):379–392. doi:10.1002/jor.1100040401

    Google Scholar 

  • Allen BC, Peters CL, Brown NA, Anderson AE (2010) Acetabular cartilage thickness: accuracy of three-dimensional reconstructions from multidetector CT arthrograms in a cadaver study. Radiology 255(2):544–552. doi:10.1148/radiol.10081876

    Article  Google Scholar 

  • Anderson AE, Ellis BJ, Maas SA, Peters CL, Weiss JA (2008a) Validation of finite element predictions of cartilage contact pressure in the human hip joint. J Biomech Eng 130(5):051008–051008

    Article  Google Scholar 

  • Anderson AE, Ellis BJ, Maas SA, Weiss JA (2010) Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip. J Biomech 43(7):1351–1357. doi:10.1016/j.jbiomech.2010.01.010

    Article  Google Scholar 

  • Anderson AE, Ellis BJ, Peters CL, Weiss JA (2008b) Cartilage thickness: factors influencing multidetector CT measurements in a phantom study. Radiology 246(1):133–141

    Article  Google Scholar 

  • Anderson AE, Ellis BJ, Weiss JA (2007a) Verification, validation and sensitivity studies in computational biomechanics. Comput Method Biomech Biomed Eng 10(3):171–184. doi:10.1080/10255840601160484

    Article  Google Scholar 

  • Anderson AE, Peters CL, Tuttle BD, Weiss JA (2005) Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J Biomech Eng 127(3):364–373

    Article  Google Scholar 

  • Anderson DD, Goldsworthy JK, Li W, Tochigi Y, Brown TD (2007b) Physical validation of a patient-specific contact finite element model of the ankle. J Biomech 40(8):1662–1669

    Article  Google Scholar 

  • ASME Committee (PT60) on Verification and Validation in Computational Solid Mechanics (2006) Guide for verification and validation in computational solid mechanics, American Society of Mechanical Engineers, New York

  • Ateshian GA, Ellis BJ, Weiss JA (2007) Equivalence between short-time biphasic and incompressible elastic material responses. J Biomech Eng 129(3):405–412

    Article  Google Scholar 

  • Ateshian GA, Lai WM, Zhu WB, Mow VC (1994) An asymptotic solution for the contact of two biphasic cartilage layers. J Biomech 27(11):1347–1360

    Article  Google Scholar 

  • Athanasiou KA, Agarwal A, Dzida FJ (1994) Comparative study of the intrinsic mechanical properties of the human acetabular and femoral head cartilage. J Orthop Res 12(3):340–349

    Article  Google Scholar 

  • Athanasiou KA, Agarwal A, Muffoletto A, Dzida FJ, Constantinides G, Clem M (1995) Biomechanical properties of hip cartilage in experimental animal models. Clin Orthop Relat Res 316:254–266

    Google Scholar 

  • Athanasiou KA, Rosenwasser MP, Buckwalter JA, Malinin TI, Mow VC (1991) Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J Orthop Res 9(3):330–340. doi:10.1002/jor.1100090304

    Article  Google Scholar 

  • Atkinson PJ, Haut RC (1995) Subfracture insult to the human cadaver patellofemoral joint produces occult injury. J Orthop Res 13(6):936–944. doi:10.1002/jor.1100130619

    Article  Google Scholar 

  • Bay BK, Hamel AJ, Olson SA, Sharkey NA (1997) Statically equivalent load and support conditions produce different hip joint contact pressures and periacetabular strains. J Biomech 30(2):193–196

    Article  Google Scholar 

  • Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34(7):859–871

    Article  Google Scholar 

  • Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160

    Article  Google Scholar 

  • Brand RA (2005) Joint contact stress: a reasonable surrogate for biological processes? Iowa Orthop J 25:82–94

    Google Scholar 

  • Brown TD, DiGioia AM 3rd (1984) A contact-coupled finite element analysis of the natural adult hip. J Biomech 17(6):437–448

    Article  Google Scholar 

  • Brown TD, Rudert MJ, Grosland NM (2004) New methods for assessing cartilage contact stress after articular fracture. Clin Orthop Relat Res 423:52–58

    Article  Google Scholar 

  • Brown TD, Shaw DT (1983) In vitro contact stress distributions in the natural human hip. J Biomech 16(6):373–384

    Article  Google Scholar 

  • Buckley MR, Gleghorn JP, Bonassar LJ, Cohen I (2008) Mapping the depth dependence of shear properties in articular cartilage. J Biomech 41(11):2430–2437. doi:10.1016/j.jbiomech.2008.05.021

    Article  Google Scholar 

  • Carter DR, Beaupre GS, Wong M, Smith RL, Andriacchi TP, Schurman DJ et al (2004) The mechanobiology of articular cartilage development and degeneration. Clin Orthop Relat Res 427(Suppl): S69–S77

    Google Scholar 

  • Changoor A, Fereydoonzad L, Yaroshinsky A, Buschmann MD (2010) Effects of refrigeration and freezing on the electromechanical and biomechanical properties of articular cartilage. J Biomech Eng 132(6):064502. doi:10.1115/1.4000991

    Article  Google Scholar 

  • Chapra SC, Canale RP (2002) Finite difference: elliptic equations. In: Numerical methods for engineers, 4th edn, McGraw-Hill Higher Education, New York

  • Chegini S, Beck M, Ferguson SJ (2009) The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis. J Orthop Res 27(2):195–201

    Article  Google Scholar 

  • Chen AC, Bae WC, Schinagl RM, Sah RL (2001) Depth- and strain-dependent mechanical and electromechanical properties of full-thickness bovine articular cartilage in confined compression. J Biomech 34(1):1–12

    Article  Google Scholar 

  • Creamer P, Hochberg MC (1997) Osteoarthritis. Lancet 350(9076):503–508. doi:10.1016/S0140-6736(97)07226-7

  • Dalstra M, Huiskes R (1995) Load transfer across the pelvic bone. J Biomech 28(6):715–724

    Article  Google Scholar 

  • Donahue TL, Hull ML, Rashid MM, Jacobs CR (2002) A finite element model of the human knee joint for the study of tibio-femoral contact. J Biomech Eng 124(3):273–280

    Article  Google Scholar 

  • Finner H (1993) On a monotonicity problem in step-down multiple test procedures. J Am Stat Assoc 88(423):920–923. doi:10.1080/01621459.1993.10476358

    Article  MATH  MathSciNet  Google Scholar 

  • Fischer KJ, Manson TT, Pfaeffle HJ, Tomaino MM, Woo SL (2001) A method for measuring joint kinematics designed for accurate registration of kinematic data to models constructed from CT data. J Biomech 34(3):377–383

    Google Scholar 

  • Gu KB, Li LP (2011) A human knee joint model considering fluid pressure and fiber orientation in cartilages and menisci. Med Eng Phys 33(4):497–503. doi:10.1016/j.medengphy.2010.12.001

    Article  MATH  Google Scholar 

  • Guilak F, Fermor B, Keefe FJ, Kraus VB, Olson SA, Pisetsky DS, Setton LA, Weinberg JB (2004) The role of biomechanics and inflammation in cartilage injury and repair. Clin Orthop Relat Res 423:17–26

    Article  Google Scholar 

  • Guilak F, Hung CT (2005) Physical regulation of cartilage metabolism. In: Mow VC, Huiskes R (eds) Basic orthopaedic biomechanics and mechano-biology, 3rd edn. Lippincott Williams & Wilkins, Philadephia

    Google Scholar 

  • Hale JE, Brown TD (1992) Contact stress gradient detection limits of Pressensor film. J Biomech Eng 114(3):352–357

    Article  Google Scholar 

  • Harris MD, Anderson AE, Henak CR, Ellis BJ, Peters CL, Weiss JA (2012) Finite element prediction of cartilage contact stresses in normal human hips. J Orthop Res 30(7):1133–1139. doi:10.1002/jor.22040

    Article  Google Scholar 

  • Haut RC, Ide TM, De Camp CE (1995) Mechanical responses of the rabbit patello-femoral joint to blunt impact. J Biomech Eng 117(4):402–408

    Article  Google Scholar 

  • Henak CR, Anderson AE, Weiss JA (2013) Subject-specific analysis of joint contact mechanics: application to the study of osteoarthritis and surgical planning. J Biomech Eng (in press)

  • Henak CR, Ellis BJ, Harris MD, Anderson AE, Peters CL, Weiss JA (2011) Role of the acetabular labrum in load support across the hip joint. J Biomech 44(12):2201–2206. doi:10.1016/j.jbiomech.2011.06.011

    Article  Google Scholar 

  • Henninger HB, Reese SP, Anderson AE, Weiss JA (2010) Validation of computational models in biomechanics. Proc Inst Mech Eng H 224(7):801–812

    Article  Google Scholar 

  • Hodge WA, Carlson KL, Fijan RS, Burgess RG, Riley PO, Harris WH, Mann RW (1989) Contact pressures from an instrumented hip endoprosthesis. J Bone Joint Surg Am 71(9):1378–1386

    Google Scholar 

  • Huang CY, Soltz MA, Kopacz M, Mow VC, Ateshian GA (2003) Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage. J Biomech Eng 125(1):84–93

    Article  Google Scholar 

  • Huang CY, Stankiewicz A, Ateshian GA, Mow VC (2005) Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation. J Biomech 38(4):799–809. doi:10.1016/j.jbiomech.2004.05.006

    Article  Google Scholar 

  • Kennedy EA, Tordonado DS, Duma SM (2007) Effects of freezing on the mechanical properties of articular cartilage. Biomed Sci Instrum 43:342–347

    Google Scholar 

  • Krishnan R, Park S, Eckstein F, Ateshian GA (2003) Inhomogeneous cartilage properties enhance superficial interstitial fluid support and frictional properties, but do not provide a homogeneous state of stress. J Biomech Eng 125(5):569–577

    Article  Google Scholar 

  • Li X, Haut RC, Altiero NJ (1995) An analytical model to study blunt impact response of the rabbit P-F joint. J Biomech Eng 117(4):485–491

    Article  Google Scholar 

  • Maas S, Rawlins D, Weiss J (2012a) PostView: finite element post-processing. Musculoskeletal Research Laboratories. http://mrl.sci.utah.edu/software/postview

  • Maas S, Rawlins D, Weiss J, Ateshian G (2011) FEBio: Theory Manual. Musculoskeletal Research Laboratories, Salt Lake City, UT

    Google Scholar 

  • Maas SA, Ellis BJ, Ateshian GA, Weiss JA (2012b) FEBio: finite elements for biomechanics. J Biomech Eng 134(1):011005. doi:10.1115/1.4005694

    Article  Google Scholar 

  • Makela JT, Huttu MR, Korhonen RK (2012) Structure-function relationships in osteoarthritic human hip joint articular cartilage. Osteoarthritis Cartilage. doi:10.1016/j.joca.2012.07.016

  • Maroudas A, Bayliss MT, Venn MF (1980) Further studies on the composition of human femoral head cartilage. Ann Rheum Dis 39(5):514–523

    Article  Google Scholar 

  • McCarthy WF, Thompson DR (2007) The analysis of pixel intensity (myocardial signal density) data: the quantification of myocardial perfusion by imaging methods. COBRA Preprint Series Working Paper 23

  • Mononen ME, Mikkola MT, Julkunen P, Ojala R, Nieminen MT, Jurvelin JS, Korhonen RK (2012) Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics-a 3D finite element analysis. J Biomech 45(3):579–587. doi:10.1016/j.jbiomech.2011.11.003

    Article  Google Scholar 

  • Mow VC, Guo XE (2002) Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Ann Rev Biomed Eng 4(1):175–209. doi:10.1146/annurev.bioeng.4.110701.120309

    Article  Google Scholar 

  • Murphy LB, Helmick CG, Schwartz TA, Renner JB, Tudor G, Koch GG, Dragomir AD, Kalsbeek WD, Luta G, Jordan JM (2010) One in four people may develop symptomatic hip osteoarthritis in his or her lifetime. Osteoarthritis Cartilage 18(11):1372–1379. doi:10.1016/j.joca.2010.08.005

    Article  Google Scholar 

  • Newberry WN, Garcia JJ, Mackenzie CD, Decamp CE, Haut RC (1998) Analysis of acute mechanical insult in an animal model of post-traumatic osteoarthrosis. J Biomech Eng 120(6):704–709

    Article  Google Scholar 

  • Park S, Hung CT, Ateshian GA (2004) Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels. Osteoarthritis Cartilage 12(1): 65–73

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Interpolation and Extrapolation. In: Numerical recipes: the art of scientific computing, 3rd edn, Cambridge University Press, New York

  • Puso MA (2004) A 3D mortar method for solid mechanics. Int J Num Methods Eng 59(3):315–336

    Article  MATH  Google Scholar 

  • Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193(6–8):601–629

    Article  MATH  MathSciNet  Google Scholar 

  • Puso MA, Maker Bradley N, Ferencz Robert M, Hallquist John O (2007) NIKE3D: a nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics. User’s Manual

  • Quapp KM, Weiss JA (1998) Material characterization of human medial collateral ligament. J Biomech Eng 120(6):757–763

    Article  Google Scholar 

  • Rapperport DJ, Carter DR, Schurman DJ (1985) Contact finite element stress analysis of the hip joint. J Orthop Res 3(4):435–446

    Article  Google Scholar 

  • Rushfeldt PD, Mann RW, Harris WH (1981) Improved techniques for measuring in vitro the geometry and pressure distribution in the human acetabulum. II instrumented endoprosthesis measurement of articular surface pressure distribution. J Biomech 14(5):315–323

    Article  Google Scholar 

  • Russell ME, Shivanna KH, Grosland NM, Pedersen DR (2006) Cartilage contact pressure elevations in dysplastic hips: a chronic overload model. J Orthop Surg Res 1:6–6

    Article  Google Scholar 

  • Schinagl RM, Gurskis D, Chen AC, Sah RL (1997) Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthop Res 15(4):499–506. doi:10.1002/jor.1100150404

    Article  Google Scholar 

  • Seedhom BB, Takeda T, Tsubuku M, Wright V (1979) Mechanical factors and patellofemoral osteoarthrosis. Ann Rheum Dis 38(4):307–316

    Article  Google Scholar 

  • Segal NA, Anderson DD, Iyer KS, Baker J, Torner JC, Lynch JA, Felson DT, Lewis CE, Brown TD (2009) Baseline articular contact stress levels predict incident symptomatic knee osteoarthritis development in the MOST cohort. J Orthop Res 27(12):1562–1568. doi:10.1002/jor.20936

    Article  Google Scholar 

  • Segal NA, Kern AM, Anderson DD, Niu J, Lynch J, Guermazi A, Torner JC, Brown TD, Nevitt M (2012) Elevated tibiofemoral articular contact stress predicts risk for bone marrow lesions and cartilage damage at 30 months. Osteoarthritis Cartilage 20(10):1120–1126. doi:10.1016/j.joca.2012.05.013

    Article  Google Scholar 

  • Setton LA, Zhu W, Mow VC (1993) The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior. J Biomech 26(4–5):581–592

    Article  Google Scholar 

  • Shepherd DE, Seedhom BB (1999) The ‘instantaneous’ compressive modulus of human articular cartilage in joints of the lower limb. Rheumatology 38(2):124–132

    Article  Google Scholar 

  • Silyn-Roberts H, Broom ND (1990) Fracture behaviour of cartilage-on-bone in response to repeated impact loading. Connect Tissue Res 24(2):143–156

    Article  Google Scholar 

  • Soltz MA, Ateshian GA (2000) A conewise linear elasticity mixture model for the analysis of tension-compression nonlinearity in articular cartilage. J Biomech Eng 122(6):576–586

    Google Scholar 

  • Swann AC, Seedhom BB (1993) The stiffness of normal articular cartilage and the predominant acting stress levels: implications for the aetiology of osteoarthrosis. Br J Rheumatol 32(1):16–25

    Google Scholar 

  • Szarko M, Muldrew K, Bertram JE (2010) Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage. BMC Musculoskelet Disord 11:231. doi:10.1186/1471-2474-11-231

    Google Scholar 

  • Taylor SD, Tsiridis E, Ingham E, Jin Z, Fisher J, Williams S (2012) Comparison of human and animal femoral head chondral properties and geometries. Proc Inst Mech Eng H 226(1):55–62

    Google Scholar 

  • Treppo S, Koepp H, Quan EC, Cole AA, Kuettner KE, Grodzinsky AJ (2000) Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J Orthop Res 18(5):739–748. doi:10.1002/jor.1100180510

    Article  Google Scholar 

  • Veronda DR, Westmann RA (1970) Mechanical characterization of skin-finite deformations. J Biomech 3(1):111–124

    Article  Google Scholar 

  • Vissers MM, Bussmann JB, de Groot IB, Verhaar JA, Reijman M (2011) Walking and chair rising performed in the daily life situation before and after total hip arthroplasty. Osteoarthritis Cartilage 19(9):1102–1107. doi:10.1016/j.joca.2011.06.004

    Article  Google Scholar 

  • von Eisenhart-Rothe R, Eckstein F, Muller-Gerbl M, Landgraf J, Rock C, Putz R (1997) Direct comparison of contact areas, contact stress and subchondral mineralization in human hip joint specimens. Anat Embryol 195(3):279–288

    Article  Google Scholar 

  • von Eisenhart R, Adam C, Steinlechner M, Muller-Gerbl M, Eckstein F (1999) Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint. J Orthop Res 17(4):532–539

    Article  Google Scholar 

  • Willett TL, Whiteside R, Wild PM, Wyss UP, Anastassiades T (2005) Artefacts in the mechanical characterization of porcine articular cartilage due to freezing. Proc Inst Mech Eng H 219(1):23–29

    Article  Google Scholar 

  • Wilson W, van Donkelaar CC, van Rietbergen R, Huiskes R (2005) The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage. Med Eng Phys 27(10):810–826

    Article  Google Scholar 

  • Wong M, Ponticiello M, Kovanen V, Jurvelin JS (2000) Volumetric changes of articular cartilage during stress relaxation in unconfined compression. J Biomech 33(9):1049–1054

    Article  Google Scholar 

  • Wu JZ, Herzog W, Epstein M (1998) Effects of inserting a pressensor film into articular joints on the actual contact mechanics. J Biomech Eng 120(5):655–659

    Article  Google Scholar 

  • Yao JQ, Seedhom BB (1993) Mechanical conditioning of articular cartilage to prevalent stresses. Br J Rheumatol 32(11):956–965

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from National Institutes of Health #R01AR05334 and #R01GM083925 is gratefully acknowledged. The authors thank Greg Stoddard for statistical advice and Gerard Ateshian (Columbia University) for guidance regarding the protocol for cartilage material testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Weiss.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 208 KB)

Supplementary material 2 (TIF 2660 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henak, C.R., Kapron, A.L., Anderson, A.E. et al. Specimen-specific predictions of contact stress under physiological loading in the human hip: validation and sensitivity studies. Biomech Model Mechanobiol 13, 387–400 (2014). https://doi.org/10.1007/s10237-013-0504-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-013-0504-1

Keywords

Navigation