Skip to main content
Log in

Scale-dependent mechanical properties of native and decellularized liver tissue

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Decellularization, a technique used in liver regenerative medicine, is the removal of all the cellular components from a tissue or organ, leaving behind an intact structure of extracellular matrix. The biomechanical properties of this novel scaffold material are currently unknown and are important due to the mechanosensitivity of liver cells. Characterizing this material is important for bioengineering liver tissue from this decellularized scaffold as well as creating new 3-dimensional mimetic structures of liver extracellular matrix. This study set out to characterize the biomechanical properties of perfused liver tissue in its native and decellularized states on both a macro- and nano-scale. Poroviscoelastic finite element models were then used to extract the fluid and solid mechanical properties from the experimental data. Tissue-level spherical indentation-relaxation tests were performed on 5 native livers and 8 decellularized livers at two indentation rates and at multiple perfusion rates. Cellular-level spherical nanoindentation was performed on 2 native livers and 1 decellularized liver. Tissue-level results found native liver tissue to possess a long-term Young’s modulus of 10.5 kPa and decellularized tissue a modulus of 1.18 kPa. Cellular-level testing found native tissue to have a long-term Young’s modulus of 4.40 kPa and decellularized tissue to have a modulus of 0.91 kPa. These results are important for regenerative medicine and tissue engineering where cellular response is dependent on the mechanical properties of the engineered scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abaqus (2010) Abaqus user’s manual (version 6.10)

  • Aycock RS, Seyer JM (1989) Collagens of normal and cirrhotic human liver. Connect Tissue Res 23(1):19–31; Aycock RS, Seyer JM, AA-03732/AA/NIAAA NIH HHS/United States AR-39166/AR/ NIAMS NIH HHS/United States Research Support, US Gov’t, Non-P.H.S. Research support, US Gov’t, P.H.S. England connective tissue research

  • Ayyalasomayajula A, Geest JPV, Simon BR (2010) Porohyperelastic finite element modeling of abdominal aortic aneurysms. J Biomech Eng 132(10): 104–502

    Article  Google Scholar 

  • Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S (2011) The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53(2): 604–617

    Article  Google Scholar 

  • Cheng S, Bilston LE (2007) Unconfined compression of white matter. J Biomech 40(1): 117–124

    Article  Google Scholar 

  • Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2(12): 780–783. doi:10.1038/nnano.2007.388

    Article  Google Scholar 

  • DiSilvestro MR, Zhu Q, Suh JKF (2001a) Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: Ii—effect of variable strain rates. J Biomech Eng 123(2): 198–200

    Article  Google Scholar 

  • DiSilvestro MR, Zhu Q, Wong M, Jurvelin JS, Suh JKF (2001b) Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: I—simultaneous prediction of reaction force and lateral displacement. J Biomech Eng 123(2): 191–197

    Article  Google Scholar 

  • Evans DW, Vavalle NA, DeVita R, Rajagopalan P, Sparks JL (2012) Nano-indentation device for investigating the mechanics of compliant materials. Exp Mech, , pp 1–13

  • Fischer-Cripps AC (2002) Nanoindentation, 2nd edn. Mechanical engineering. Springer, New York

    Google Scholar 

  • Gu WY, Mao XG, Foster RJ, Weidenbaum M, Mow VC, Rawlins BA (1999) The anisotropic hydraulic permeability of human lumbar anulus fibrosus: influence of age, degeneration, direction, and water content. Spine 24(23): 2449

    Article  Google Scholar 

  • Guyton AC, Hall JE (2006) Textbook of medical physiology. Elsevier Saunders, Philadelphia

    Google Scholar 

  • Hansen LK, Wilhelm J, Fassett JT (2005) Regulation of hepatocyte cell cycle progression and differentiation by type I collagen structure, vol 72. Academic Press, Waltham, MA, pp, pp 205–236

    Google Scholar 

  • Hay E (1991) Cell biology of extracellular matrix. Plenum Press, New York

    Book  Google Scholar 

  • Hsu WM, Carraro A, Kulig KM, Miller ML, Kaazempur-Mofrad M, Weinberg E, Entabi F, Albadawi H, Watkins MT, Borenstein JT, Vacanti JP, Neville C (2010) Liver-assist device with a microfluidics-based vascular bed in an animal model. Ann Surg 252(2): 351–357. doi:10.1097/SLA.0b013e3181e982ba

    Article  Google Scholar 

  • Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A Math Phys Sci 324(1558): 301–313

    Article  Google Scholar 

  • Kerdok AE (2006) Characterizing the nonlinear mechanical response of liver to surgical manipulation. PhD thesis, Harvard University

  • Kerdok AE, Ottensmeyer MP, Howe RD (2006) Effects of perfusion on the viscoelastic characteristics of liver. J Biomech 39(12): 2221–2231

    Article  Google Scholar 

  • Liu Z, Bilston L (2000) On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour. Biorheology 37(3): 191–201

    Google Scholar 

  • Liu Z, Bilston LE (2002) Large deformation shear properties of liver tissue. Biorheology 39(6): 735–742

    Google Scholar 

  • Lozoya OA, Wauthier E, Turner RA, Barbier C, Prestwich GD, Guilak F, Superfine R, Lubkin SR, Reid LM (2011) Regulation of hepatic stem/progenitor phenotype by microenvironment stiffness in hydrogel models of the human liver stem cell niche. Biomaterials 32(30): 7389–7402

    Article  Google Scholar 

  • Mak AF (1986) The apparent viscoelastic behavior of articular crtilage—the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows. J Biomech Eng 108(2): 123–130

    Article  Google Scholar 

  • Mansour JM, Mow VC (1976) The permeability of articular cartilage under compressive strain and at high pressures. J Bone Joint Surg 58(4): 509–516

    Google Scholar 

  • Markus JB (2011) Multiscale aspects of mechanical properties of biological materials. J Mech Behav Biomed Mater 4(2): 125–127

    Article  Google Scholar 

  • Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22(2): 80–86

    Article  Google Scholar 

  • Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng 102(1): 73–84

    Article  Google Scholar 

  • Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6): 491–505. doi:10.1038/nmeth.1218

    Article  Google Scholar 

  • Ng EYK, Ghista DN, Jegathese RC (2005) Perfusion studies of steady flow in poroelastic myocardium tissue. Comput Methods Biomech Biomed Eng 8(6): 349–357

    Article  Google Scholar 

  • OPTN (2011) Organ procurement and transplantation network: National data

  • Orlando G, Baptista P, Birchall M, Coppi P, Farney A, Guimaraes-Souza NK, Opara E, Rogers J, Seliktar D, Shapira-Schweitzer K, Stratta RJ, Atala A, Wood KJ, Soker S (2011a) Regenerative medicine as applied to solid organ transplantation: current status and future challenges. Transpl Int 24(3): 223–232

    Article  Google Scholar 

  • Orlando G, Wood KJ, Stratta RJ, Yoo JJ, Atala A, Soker S (2011b) Regenerative medicine and organ transplantation: past, present, and future. Transplantation 91(12): 1310–1317. doi:10.1097/TP.0b013e318,219ebb5

    Article  Google Scholar 

  • Pitt Ford TR, Sachs JR, Grotberg JB, Glucksberg MR (1991b) Perialveolar interstitial resistance and compliance in isolated rat lung. J Appl Physiol 70(6): 2750–2756

    Google Scholar 

  • Raghunathan S, Evans D, Sparks J (2010) Poroviscoelastic modeling of liver biomechanical response in unconfined compression. Ann Biomed Eng 38(5): 1789–1800

    Article  Google Scholar 

  • Ricken T, Dahmen U, Dirsch O (2010) A biphasic model for sinusoidal liver perfusion remodeling after outflow obstruction. Biomech Model Mechanobiol 9(4): 435–450

    Article  Google Scholar 

  • Roan E, Vemaganti K (2007) The nonlinear material properties of liver tissue determined from no-slip uniaxial compression experiments. J Biomech Eng 129(3): 450–456

    Article  Google Scholar 

  • Scarborough JE, Tuttle-Newhall JE, Pietrobon R, Marroquin CE, Collins BH, Desai DM, Kuo PC, Pappas TN (2008) Supply and demand for liver transplant surgery: are we training enough surgeons?. HPB 10(1): 25–29

    Article  Google Scholar 

  • Schwartz JM, Denninger M, Rancourt D, Moisan C, Laurendeau D (2005) Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation. Med Image Anal 9(2): 103–112

    Article  Google Scholar 

  • Sedeh RS, Ahmadian MT, Janabi-Sharifi F (2010) Modeling, simulation, and optimal initiation planning for needle insertion into the liver. J Biomech Eng 132(4): 041,001–041,011

    Article  Google Scholar 

  • Simon BR (1992) Multiphase poroelastic finite element models for soft tissue structures. Appl Mech Rev 45(6): 191–218

    Article  Google Scholar 

  • Suh JK, Bai S (1998) Finite element formulation of biphasic poroviscoelastic model for articular cartilage. J Biomech Eng 120(2): 195–201

    Article  Google Scholar 

  • Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, Hertl M, Nahmias Y, Yarmush ML, Uygun K (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16(7):814–20. Research Support, Non-US Gov’t, Research Support, US Gov’t, Non-P.H.S., Research Support, N.I.H., Extramural

    Google Scholar 

  • Wells RG (2008) The role of matrix stiffness in regulating cell behavior. Hepatology 47(4): 1394–1400

    Article  Google Scholar 

  • Wu JZ, Herzog W, Epstein M (1997) Evaluation of the finite element software abaqus for biomechanical modelling of biphasic tissues. J Biomech 31(2): 165–169

    Article  Google Scholar 

  • Yang Z, Smolinski P (2006) Dynamic finite element modeling of poroviscoelastic soft tissue. Comput Methods Biomech Biomed Eng 9(1): 7–16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica L. Sparks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, D.W., Moran, E.C., Baptista, P.M. et al. Scale-dependent mechanical properties of native and decellularized liver tissue. Biomech Model Mechanobiol 12, 569–580 (2013). https://doi.org/10.1007/s10237-012-0426-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0426-3

Keywords

Navigation