Skip to main content
Log in

Computational hemodynamic optimization predicts dominant aortic arch selection is driven by embryonic outflow tract orientation in the chick embryo

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

In the early embryo, a series of symmetric, paired vessels, the aortic arches, surround the foregut and distribute cardiac output to the growing embryo and fetus. During embryonic development, the arch vessels undergo large-scale asymmetric morphogenesis to form species-specific adult great vessel patterns. These transformations occur within a dynamic biomechanical environment, which can play an important role in the development of normal arch configurations or the aberrant arch morphologies associated with congenital cardiac defects. Arrested migration and rotation of the embryonic outflow tract during late stages of cardiac looping has been shown to produce both outflow tract and several arch abnormalities. Here, we investigate how changes in flow distribution due to a perturbation in the angular orientation of the embryonic outflow tract impact the morphogenesis and growth of the aortic arches. Using a combination of in vivo arch morphometry with fluorescent dye injection and hemodynamics-driven bioengineering optimization-based vascular growth modeling, we demonstrate that outflow tract orientation significantly changes during development and that the associated changes in hemodynamic load can dramatically influence downstream aortic arch patterning. Optimization reveals that balancing energy expenditure with diffusive capacity leads to multiple arch vessel patterns as seen in the embryo, while minimizing energy alone led to the single arch configuration seen in the mature arch of aorta. Our model further shows the critical importance of the orientation of the outflow tract in dictating morphogenesis to the adult single arch and accurately predicts arch IV as the dominant mature arch of aorta. These results support the hypothesis that abnormal positioning of the outflow tract during early cardiac morphogenesis may lead to congenital defects of the great vessels due to altered hemodynamic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alford PW, Humphrey JD, Taber LA (2008) Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents. Biomech Model Mechanobiol 7(4): 245–262. doi:10.1007/s10237-007-0101-2

    Article  Google Scholar 

  • Baba K, Kawamura T, Shibata M, Sohirad M, Kamiya A (1995) Capillary-tissue arrangement in the skeletal muscle optimized for oxygen transport in all mammals. Microvasc Res 49(2): 163–179. doi:10.1006/mvre.1995.1013

    Article  Google Scholar 

  • Backer CL, Mavroudis C (1997) Surgical approach to vascular rings. Adv Card Surg 9: 29–64

    Google Scholar 

  • Bajolle F, Zaffran S, Kelly RG, Hadchouel J, Bonnet D, Brown NA, Buckingham ME (2006) Rotation of the myocardial wall of the outflow tract is implicated in the normal positioning of the great arteries. Circ Res 98(3): 421–428. doi:10.1161/01.RES.0000202800.85341.6e

    Article  Google Scholar 

  • Barry A (1951) The aortic arch derivatives in the human adult. Anat Rec (Hoboken) 111(2): 221–238

    Article  Google Scholar 

  • Bayer IM, Adamson SL, Langille BL (1999) Atrophic remodeling of the artery-cuffed artery. Arter Thromb Vasc Biol 19(6): 1499–1505

    Article  Google Scholar 

  • Beloussov LV (2008) Mechanically based generative laws of morphogenesis. Phys Biol 5(1): 015009. doi:10.1088/1478-3975/5/1/015009

    Article  Google Scholar 

  • Beloussov LV, Grabovsky VI (2006) Morphomechanics: goals, basic experiments and models. Int J Dev Biol 50(2–3): 81–92. doi:10.1387/ijdb.052056lb

    Article  Google Scholar 

  • Bostrom MP, Hutchins GM (1988) Arrested rotation of the outflow tract may explain double-outlet right ventricle. Circulation 77(6): 1258–1265

    Article  Google Scholar 

  • Brauner CJ, Matey V, Wilson JM, Bernier NJ, Val AL (2004) Transition in organ function during the evolution of air-breathing: insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon. J Exp Biol 207(Pt 9): 1433–1438

    Article  Google Scholar 

  • Bremer JL (1928) Experiments on the aortic arches in the chick. Anat Rec (Hoboken) 37(3): 225–254

    Article  Google Scholar 

  • Chen CY, Patrick MJ, Corti P, Kowalski WJ, Roman BL, Pekkan K (2011) Early embryonic great-vessel microcirculation in zebrafish using high-speed confocal μPIV and volume-of-fluid methods. Biorheology (accepted)

  • Collette Y, Siarry P (2003) Multiobjective optimization: principles and case studies. Springer, Berlin

    Google Scholar 

  • Congdon ED, Wang HD (1926) The mechanical processes concerned in the formation of the different types of aortic arches in the chick and pig and the divergent early development of their pulmonary arches. Am J Anat 37: 499–520

    Article  Google Scholar 

  • Corti P, Young S, Chen CY, Patrick MJ, Rochon ER, Pekkan K, Roman BL (2011) Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development 138(8): 1573–1582. doi:10.1242/dev.060467

    Article  Google Scholar 

  • Culver JC, Dickinson ME (2010) The effects of hemodynamic force on embryonic development. Microcirculation 17(3): 164–178. doi:10.1111/j.1549-8719.2010.00025.x

    Article  Google Scholar 

  • deAlmeida A, McQuinn T, Sedmera D (2007) Increased ventricular preload is compensated by myocyte proliferation in normal and hypoplastic fetal chick left ventricle. Circ Res 100(9): 1363–1370. doi:10.1161/01.RES.0000266606.88463.cb

    Article  Google Scholar 

  • de la Cruz MV, Sanchez Gomez C, Arteaga MM, Arguello C (1977) Experimental study of the development of the truncus and the conus in the chick embryo. J Anat 123(Pt 3): 661–686

    Google Scholar 

  • Dor X, Corone P (1985) Migration and torsions of the conotruncus in the chick embryo heart: observational evidence and conclusions drawn from experimental intervention. Heart Vessels 1(4): 195–211

    Article  Google Scholar 

  • Dur O, Wang Y, Patrick M, Tinney J, Keller B, Pekkan K (2009) Correlation of wall shear stress and pharyngeal arch lumen diameter during early embryonic development in the chick. Paper presented at the BMES annual fall meeting, Pittsburgh, 8 Oct

  • Dur O, Coskun TS, Coskun OK, Frakes D, Kara LB, Pekkan K (2011) Computer-aided patient-specific coronary artery graft design improvements using CFD coupled shape optimizer. Cardiovasc Eng Technol 2(1): 35–47

    Article  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85(1): 97–177. doi:10.1152/physrev.00050.2003

    Article  Google Scholar 

  • Figueroa CA, Baek S, Taylor CA, Humphrey JD (2009) A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput Methods Appl Mech Eng 198(45–46): 3583–3602. doi:10.1016/j.cma.2008.09.013

    Article  MathSciNet  MATH  Google Scholar 

  • Flynn ME, Pikalow AS, Kimmelman RS, Searls RL (1991) The mechanism of cervical flexure formation in the chick. Anat Embryol (Berl) 184(4): 411–420

    Article  Google Scholar 

  • Fung YC (1990) Biomechanics: motion, flow, stress, and growth. Springer, New York

    MATH  Google Scholar 

  • Gessner IH (1966) Spectrum of congenital cardiac anomalies produced in chick embryos by mechanical interference with cardiogenesis. Circ Res 18(6): 625–633

    Article  Google Scholar 

  • Girerd X, London G, Boutouyrie P, Mourad JJ, Safar M, Laurent S (1996) Remodeling of the radial artery in response to a chronic increase in shear stress. Hypertension 27(3 Pt 2): 799–803

    Article  Google Scholar 

  • Gleason RL, Humphrey JD (2004) A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. J Vasc Res 41(4): 352–363. doi:10.1159/000080699

    Article  Google Scholar 

  • Goor DA, Edwards JE (1973) The spectrum of transposition of the great arteries: with specific reference to developmental anatomy of the conus. Circulation 48(2): 406–415

    Article  Google Scholar 

  • Groenendijk BC, Hierck BP, Gittenberger-De Groot AC, Poelmann RE (2004) Development-related changes in the expression of shear stress responsive genes KLF-2, ET-1, and NOS-3 in the developing cardiovascular system of chicken embryos. Dev Dyn 230(1): 57–68. doi:10.1002/dvdy.20029

    Article  Google Scholar 

  • Gruionu G, Hoying JB, Pries AR, Secomb TW (2005) Structural remodeling of mouse gracilis artery after chronic alteration in blood supply. Am J Physiol Heart Circ Physiol 288(5): H2047–H2054. doi:10.1152/ajpheart.00496.2004

    Article  Google Scholar 

  • Hacking WJ, VanBavel E, Spaan JA (1996) Shear stress is not sufficient to control growth of vascular networks: a model study. Am J Physiol 270(1 Pt 2): H364–H375

    Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88(1): 49–92

    Article  Google Scholar 

  • Hanke M (2004) Benchmarking FEMLAB 3.0a: laminar flows in 2D. Report No. 2004:01

  • Hiruma T, Hirakow R (1995) Formation of the pharyngeal arch arteries in the chick embryo: observations of corrosion casts by scanning electron microscopy. Anat Embryol (Berl) 191(5): 415–423

    Article  Google Scholar 

  • Hogers B, DeRuiter MC, Gittenberger-de Groot AC, Poelmann RE (1999) Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal. Cardiovasc Res 41(1): 87–99

    Article  Google Scholar 

  • Holzapfel GA, Ogden RW (2010) Constitutive modelling of arteries. Proc R Soc Math Phy 466(2118): 1551–1596. doi:10.1098/rspa.2010.0058

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61(1–3): 1–48

    Article  MathSciNet  MATH  Google Scholar 

  • Hu N, Clark EB (1989) Hemodynamics of the stage 12 to stage 29 chick embryo. Circ Res 65(6): 1665–1670

    Article  Google Scholar 

  • Hu N, Christensen DA, Agrawal AK, Beaumont C, Clark EB, Hawkins JA (2009) Dependence of aortic arch morphogenesis on intracardiac blood flow in the left atrial ligated chick embryo. Anat Rec (Hoboken) 292(5): 652–660. doi:10.1002/ar.20885

    Article  Google Scholar 

  • Hudetz AG, Kiani MF (1992) The role of wall shear stress in microvascular network adaptation. Adv Exp Med Biol 316: 31–39

    Article  Google Scholar 

  • Hughes GM, Morgan M (1973) Structure of fish gills in relation to their respiratory function. Biol Rev 48(3): 419–475

    Article  Google Scholar 

  • Humphrey JD (1999) Remodeling of a collagenous tissue at fixed lengths. J Biomech Eng 121(6): 591–597

    Article  Google Scholar 

  • Kamiya A, Togawa T (1980) Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am J Physiol 239(1): H14–H21

    Google Scholar 

  • Kamiya A, Takeda S, Shibata M (1987) Optimum capillary number for oxygen delivery to tissue in man. Bull Math Biol 49(3): 351– 361

    Google Scholar 

  • Kamiya A, Wakayama H, Baba K (1993) Optimality analysis of vascular-tissue system in mammals for oxygen transport. J Theor Biol 162(2): 229–242. doi:10.1006/jtbi.1993.1084

    Article  Google Scholar 

  • Kardong KV (2009) Vertebrates: comparative anatomy, function, evolution, 5th edn. McGraw-Hill Higher Education, Boston

    Google Scholar 

  • Kassab GS, Fung YC (1995) The pattern of coronary arteriolar bifurcations and the uniform shear hypothesis. Ann Biomed Eng 23(1): 13–20

    Article  Google Scholar 

  • Keenan RL, Rodbard S (1973) Competition between collateral vessels. Cardiovasc Res 7(5): 670–675

    Article  Google Scholar 

  • Khanin MA, Bukharov IB (1994) Optimal structure of the microcirculatory bed. J Theor Biol 169(3): 267–273. doi:10.1006/jtbi.1994.1147

    Article  Google Scholar 

  • LaBarbera M (1990) Principles of design of fluid transport systems in zoology. Science 249(4972): 992–1000

    Article  Google Scholar 

  • Langille BL, O’Donnell F (1986) Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231(4736): 405–407

    Article  Google Scholar 

  • Li D, Robertson AM (2009) A structural multi-mechanism damage model for cerebral arterial tissue. J Biomech Eng 131(10): 101013. doi:10.1115/1.3202559

    Article  Google Scholar 

  • Liem KF, Bemis WE, Walker WF, Grande L (2001) Functional anatomy of the vertebrates: an evolutionary perspective, 3rd edn. Thomson Brooks/Cole, Belmont

    Google Scholar 

  • Liu C, Liu W, Palie J, Lu MF, Brown NA, Martin JF (2002) Pitx2c patterns anterior myocardium and aortic arch vessels and is required for local cell movement into atrioventricular cushions. Development 129(21): 5081–5091

    Google Scholar 

  • Lomonico MP, Bostrom MP, Moore GW, Hutchins GM (1988) Arrested rotation of the outflow tract may explain tetralogy of Fallot and transposition of the great arteries. Pediatr Pathol 8(3): 267–281

    Article  Google Scholar 

  • Lu X, Zhao JB, Wang GR, Gregersen H, Kassab GS (2001) Remodeling of the zero-stress state of femoral arteries in response to flow overload. Am J Physiol Heart Circ Physiol 280(4): H1547–H1559

    Google Scholar 

  • Lucitti JL, Tobita K, Keller BB (2005) Arterial hemodynamics and mechanical properties after circulatory intervention in the chick embryo. J Exp Biol 208(Pt 10): 1877–1885. doi:10.1242/jeb.01574

    Article  Google Scholar 

  • Manner J (2000) Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process. Anat Rec 259(3): 248–262. doi:10.1002/1097-0185(20000701)259:3<248::AID-AR30>3.0.CO;2-K

    Article  Google Scholar 

  • Manner J, Seidl W, Steding G (1993) Correlation between the embryonic head flexures and cardiac development—an experimental-study in chick-embryos. Anat Embryol 188(3): 269– 285

    Article  Google Scholar 

  • Manner J, Seidl W, Steding G (1995) Formation of the cervical flexure—an experimental-study on chick-embryos. Acta Anat 152(1): 1–10

    Article  Google Scholar 

  • Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscip Optim 26(6): 369–395. doi:10.1007/s00158-003-0368-6

    Article  MathSciNet  MATH  Google Scholar 

  • Martinsen BJ (2005) Reference guide to the stages of chick heart embryology. Dev Dyn 233(4): 1217–1237. doi:10.1002/dvdy.20468

    Article  Google Scholar 

  • McDougall SR, Anderson AR, Chaplain MA, Sherratt JA (2002) Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull Math Biol 64(4): 673–702. doi:10.1006/bulm.2002.0293

    Article  Google Scholar 

  • McElhinney DB, Tworetzky W, Lock JE (2010) Current status of fetal cardiac intervention. Circulation 121(10): 1256–1263. doi:10.1161/circulationaha.109.870246

    Article  Google Scholar 

  • Mujumdar RB, Ernst LA, Mujumdar SR, Lewis CJ, Waggoner AS (1993) Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjug Chem 4(2): 105–111

    Article  Google Scholar 

  • Murray CD (1926) The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 12(3): 207–214

    Article  Google Scholar 

  • Patrick MJ, Chen CY, Frakes DH, Dur O, Pekkan K (2011) Cellular-level near-wall unsteadiness of high-hematocrit erythrocyte flow using confocal μPIV. Exp Fluids 50(4): 887–904. doi:10.1007/s00348-010-0943-8

    Article  Google Scholar 

  • Patten BM (1920) The early embryology of the chick. P. Blakiston’s Son & Co, Philadelphia

    Google Scholar 

  • Pekkan K, Dur O, Sundareswaran K, Kanter K, Fogel M, Yoganathan A, Undar A (2008) Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass. J Biomech Eng 130(6): 061012. doi:10.1115/1.2978988

    Article  Google Scholar 

  • Piiper J (1982) Respiratory gas exchange at lungs, gills and tissues: mechanisms and adjustments. J Exp Biol 100: 5–22

    Google Scholar 

  • Poelmann RE, Gittenberger-de Groot AC, Hierck BP (2008) The development of the heart and microcirculation: role of shear stress. Med Biol Eng Comput 46(5): 479–484. doi:10.1007/s11517-008-0304-4

    Article  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (1995) Design principles of vascular beds. Circ Res 77(5): 1017–1023

    Article  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (1998) Structural adaptation and stability of microvascular networks: theory and simulations. Am J Physiol 275(2 Pt 2): H349–H360

    Google Scholar 

  • Pries AR, Reglin B, Secomb TW (2001) Structural adaptation of microvascular networks: functional roles of adaptive responses. Am J Physiol Heart Circ Physiol 281(3): H1015–H1025

    Google Scholar 

  • Reckova M, Rosengarten C, deAlmeida A, Stanley CP, Wessels A, Gourdie RG, Thompson RP, Sedmera D (2003) Hemodynamics is a key epigenetic factor in development of the cardiac conduction system. Circ Res 93(1): 77–85. doi:10.1161/01.RES.0000079488.91342.B7

    Article  Google Scholar 

  • Rodbard S (1975) Vascular caliber. Cardiology 60(1): 4–49

    Article  Google Scholar 

  • Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27(4): 455–467

    Article  Google Scholar 

  • Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, McDermott MM, Meigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Turan TN, Turner MB, Wong ND, Wylie-Rosett J (2011) Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation 123(4): e18–e209. doi:10.1161/CIR.0b013e3182009701

    Article  Google Scholar 

  • Rychter Z (1962) Experimental morphology of the aortic arches and the heart loop in chick embryos. Adv Morphog 2: 333–371

    Google Scholar 

  • Rychter Z, Lemez L (1965) Changes in localization in aortic arches of laminar blood streams of main venous trunks to heart after exclusion of vitelline vessels on second day of incubation. Fed Proc Transl Suppl 24(5): 815–820

    Google Scholar 

  • Sadler TW, Langman J (2006) Langman’s medical embryology, 10th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Schittowski K (1985) NLQPL: a FORTRAN-subroutine solving constrained nonlinear programming problems. Ann Oper Res 5: 485–500

    Google Scholar 

  • Sedmera D, Pexieder T, Rychterova V, Hu N, Clark EB (1999) Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat Rec 254(2): 238–252. doi:10.1002/(SICI)1097-0185(19990201)254:2<238::AID-AR10>3.0.CO;2-V

    Article  Google Scholar 

  • Sherman TF (1981) On connecting large vessels to small. The meaning of Murray’s law. J Gen Physiol 78(4): 431–453

    Article  Google Scholar 

  • Shibeshi SS, Collins WE (2005) The rheology of blood flow in a branched arterial system. Appl Rheol 15(6): 398–405. doi:10.1901/jaba.2005.15-398

    Google Scholar 

  • Sun S, Wheeler MF, Obeyesekere M, Patrick CW Jr. (2005) A deterministic model of growth factor-induced angiogenesis. Bull Math Biol 67(2): 313–337. doi:10.1016/j.bulm.2004.07.004

    Article  MathSciNet  Google Scholar 

  • Taber LA (1998a) A model for aortic growth based on fluid shear and fiber stresses. J Biomech Eng 120(3): 348–354

    Article  Google Scholar 

  • Taber LA (1998b) An optimization principle for vascular radius including the effects of smooth muscle tone. Biophys J 74(1): 109–114. doi:10.1016/S0006-3495(98)77772-0

    Article  Google Scholar 

  • Taber LA (2009) Towards a unified theory for morphomechanics. Phil Trans A Math Phys Eng Sci 367(1902): 3555–3583. doi:10.1098/rsta.2009.0100

    Article  MathSciNet  MATH  Google Scholar 

  • Taber LA, Eggers DW (1996) Theoretical study of stress-modulated growth in the aorta. J Theor Biol 180(4): 343–357. doi:10.1006/jtbi.1996.0107

    Article  Google Scholar 

  • Taber LA, Humphrey JD (2001) Stress-modulated growth, residual stress, and vascular heterogeneity. J Biomech Eng 123(6): 528–535

    Article  Google Scholar 

  • Thompson RP, Abercrombie V, Wong M (1987) Morphogenesis of the truncus arteriosus of the chick embryo heart: movements of autoradiographic tattoos during septation. Anat Rec 218(4):434–440, 394–435. doi:10.1002/ar.1092180411

  • Tobita K, Garrison JB, Liu LJ, Tinney JP, Keller BB (2005) Three-dimensional myofiber architecture of the embryonic left ventricle during normal development and altered mechanical loads. Anat Rec A Discov Mol Cell Evol Biol 283(1): 193–201. doi:10.1002/ar.a.20133

    Google Scholar 

  • Valentin A, Humphrey JD, Holzapfel GA (2011) A multi-layered computational model of coupled elastin degradation, vasoactive dysfunction, and collagenous stiffening in aortic aging. Ann Biomed Eng 39(7): 2027–2045. doi:10.1007/s10439-011-0287-4

    Article  Google Scholar 

  • Wagenseil JE (2010) A constrained mixture model for developing mouse aorta. Biomech Model Mechanobiol. doi:10.1007/s10237-010-0265-z

  • Wang Y, Dur O, Patrick MJ, Tinney JP, Tobita K, Keller BB, Pekkan K (2009) Aortic arch morphogenesis and flow modeling in the chick embryo. Ann Biomed Eng 37(6): 1069–1081. doi:10.1007/s10439-009-9682-5

    Article  Google Scholar 

  • Watton PN, Raberger NB, Holzapfel GA, Ventikos Y (2009) Coupling the hemodynamic environment to the evolution of cerebral aneurysms: computational framework and numerical examples. J Biomech Eng 131(10): 101003. doi:10.1115/1.3192141

    Article  Google Scholar 

  • Yashiro K, Shiratori H, Hamada H (2007) Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature 450(7167): 285–288. doi:10.1038/nature06254

    Article  Google Scholar 

  • Yoshigi M, Knott GD, Keller BB (2000) Lumped parameter estimation for the embryonic chick vascular system: a time-domain approach using MLAB. Comput Methods Programs Biomed 63(1): 29–41

    Article  Google Scholar 

  • Zamir M (1977) Shear forces and blood vessel radii in the cardiovascular system. J Gen Physiol 69(4): 449–461

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerem Pekkan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowalski, W.J., Teslovich, N.C., Dur, O. et al. Computational hemodynamic optimization predicts dominant aortic arch selection is driven by embryonic outflow tract orientation in the chick embryo. Biomech Model Mechanobiol 11, 1057–1073 (2012). https://doi.org/10.1007/s10237-012-0373-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0373-z

Keywords

Navigation