Skip to main content
Log in

A computational biomimetic study of cell crawling

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Cell locomotion is a result of a series of synchronized chemo-mechanical processes. Previous extensive experimental studies have revealed many chemo-mechanical processes that may contribute to cell locomotion. In parallel, theoretical works have been developed to provide deeper insight. To date, however, direct simulations of cell locomotion on a substrate have not been seen. In this paper, a finite element–based computational model is developed to study amoeboid type of cell crawling phenomenon. Here, a cell is modeled as a 2D fluid-filled elastic vesicle, which establishes its interaction with a rigid substrate through a kinetics-based cellular adhesion model. The cell derives its motion through a differential bond breaking at the trailing edge and bond formation at the leading edge. This mechanism of crawling authenticates the hypothesis that cell locomotion can be facilitated by breaking the adhesive bonds at the rear edge, which was initially proposed by Chen (J Cell Biol 90: 187–200, 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • ABAQUS (2007) User’s manual, version 6.7, ABAQUS Inc., Pawtucket

  • Alberts B (2008) Molecular biology of the cell, 5th edn. Garland Science, New York. 1 v (various pagings)

  • Ananthakrishnan R, Ehrlicher A (2007) The forces behind cell movement. Int J Biol Sci 3(5): 303–317

    Google Scholar 

  • Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nat Mater 2(11): 715–725

    Article  Google Scholar 

  • Bell GI (1978) Models for specific adhesion of cells to cells. Science 200(4342): 618–627

    Article  Google Scholar 

  • Bray D (2001) Cell movements: from molecules to motility, 2nd edn. Garland Pub., New York, xiv, p 372

  • Chen WT (1979) Induction of spreading during fibroblast movement. J Cell Biol 81: 684–691

    Article  Google Scholar 

  • Chen WT (1981a) Mechanism of retraction of the trailing edge during fibroblast movement. J Cell Biol 90: 187–200

    Article  Google Scholar 

  • Chen WT (1981b) Surface changes during retraction induced spreading of fibroblast. J Cell Sci 49: 1–13

    Google Scholar 

  • Cheng QH et al (2009) A computational modeling for micropipette-manipulated cell detachment from a substrate mediated by receptor-ligand binding. J Mech Phys Solids 57(2): 205–220

    Article  Google Scholar 

  • Dao M, Lim CT, Suresh S (2003) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 51(11-12): 2259–2280

    Article  Google Scholar 

  • Dong C, Lei XX (2000) Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability. J Biomech 33(1): 35–43

    Article  Google Scholar 

  • Dunn GA, Zicha D (1995) Dynamics of fibroblast spreading. J Cell Sci 108: 1239–1249

    Google Scholar 

  • Evans EA, Hochmuth RM (1976) Membrane viscoelasticity. Biophys J 16(1): 1–11

    Article  Google Scholar 

  • Flaherty B, McGarry JP, McHugh PE (2007) Mathematical models of cell motility. Cell Biochem Biophys 49(1): 14–28

    Article  Google Scholar 

  • Gracheva ME, Othmer HG (2004) A continuum model of motility in ameboid cells. Bull Math Biol 66(1): 167–193

    Article  MathSciNet  Google Scholar 

  • Hammer DA, Tirrell M (1996) Biological adhesion at interfaces. Ann Rev Mater Sci 26: 651–691

    Article  Google Scholar 

  • Harris AK, Wild P, Stopak D (1980) Silicone-rubber substrata—new wrinkle in the study of cell locomotion. Science 208(4440): 177–179

    Article  Google Scholar 

  • Joanny JF, Julicher F, Prost J (2003) Motion of an adhesive gel in a swelling gradient: a mechanism for cell locomotion. Phys Rev Lett 90(16): 168102

    Article  Google Scholar 

  • Kessler MR, Sottos NR, White SR (2003) Self-healing structural composite materials. Compos Part A-Appl Sci Manuf 34(8): 743–753

    Article  Google Scholar 

  • Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3): 359–369

    Article  Google Scholar 

  • Lazopoulos KA, Stamenovic D (2008) Durotaxis as an elastic stability phenomenon. J Biomech 41(6): 1289–1294

    Article  Google Scholar 

  • Lim CT et al (2004) Large deformation of living cells using laser traps (vol. 52, p. 1837, 2004). Acta Mater 52(13): 4065–4066

    Article  Google Scholar 

  • Liu P et al (2007) Simulations of the spreading of a vesicle on a substrate surface mediated by receptor-ligand binding. J Mech Phys Solids 55(6): 1166–1181

    Article  MATH  Google Scholar 

  • Lodish HF, Darnell JE (1995) Molecular cell biology, 3rd edn. Scientific American Books: Distributed by W.H. Freeman and Co., New York. 1 v (various pagings)

  • Mohandas N, Evans E (1994) Mechanical-properties of the red-cell membrane in relation to molecular-structure and genetic-defects. Ann Rev Biophys Biomol Struc 23: 787–818

    Article  Google Scholar 

  • Mogilner A (2009) Mathematics of cell motility: have we got its number?. J Math Biol 58(1–2): 105–134

    Article  MathSciNet  MATH  Google Scholar 

  • Mogilner A, Oster G (2003) Shrinking gels pull cells. Science 302(5649): 1340–1341

    Article  Google Scholar 

  • Munevar S, Wang YL, Dembo M (2001) Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys J 80(4): 1744–1757

    Article  Google Scholar 

  • Munevar S, Wang YL, Dembo M (2001a) Imaging traction forces generated by migrating fibroblasts. Biophys J 80(1): 276A–276A

    Google Scholar 

  • Munevar S, Wang YL, Dembo M (2001b) Distinct roles of frontal and rear cell-substrate adhesions in fibroblast migration. Mole Biol Cell 12(12): 3947–3954

    Google Scholar 

  • N’dri NA, Shyy W, Tran-Soy-Tay R (2003) Computational modeling of cell adhesion and movement using a continuum-kinetics approach. Biophys J 85(4): 2273–2286

    Article  Google Scholar 

  • Reboux S, Richardson G, Jensen OE (2008) Bond tilting and sliding friction in a model of cell adhesion. Proc Royal Soc A-Math Phys Eng Sci 464(2090): 447–467

    Article  MathSciNet  MATH  Google Scholar 

  • Rubinstein B, Jacobson K, Mogilner A (2005) Multiscale two-dimensional modeling of a motile simple-shaped cell. Multiscale Model Simul 3(2): 413–439

    Article  MathSciNet  MATH  Google Scholar 

  • Seifert U (1991) Adhesion of vesicles in 2 dimensions. Phys Rev A 43(12): 6803–6814

    Article  MathSciNet  Google Scholar 

  • Small JV et al (2002) How do microtubules guide migrating cells?. Nat Rev Mole Cell Biol 3(12): 957–964

    Article  Google Scholar 

  • Smith AS, Sackmann E (2009) Progress in mimetic studies of cell adhesion and the mechanosensing. Chemphyschem 10(1): 66–78

    Article  Google Scholar 

  • Springer TA (1990) Adhesion receptors of the immune-system. Nature 346(6283): 425–434

    Article  MathSciNet  Google Scholar 

  • Stossel TP (1993) On the crawling of animal-cells. Science 260(5111): 1086–1094

    Article  Google Scholar 

  • Tan JL et al (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci US Am 100(4): 1484–1489

    Article  Google Scholar 

  • Zhang CY, Zhang YW (2008) Computational analysis of adhesion force in the indentation of cells using atomic force microscopy. Physical Review E 77(2)

  • Zhu C (2000) Kinetics and mechanics of cell adhesion. J Biomech 33(1): 23–33

    Article  Google Scholar 

  • Zhu C, Bao G, Wang N (2000) Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Ann Rev Biomed Eng 2: 189–226

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jerry Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S., Qi, H.J. A computational biomimetic study of cell crawling. Biomech Model Mechanobiol 9, 573–581 (2010). https://doi.org/10.1007/s10237-010-0198-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-010-0198-6

Keywords

Navigation