Skip to main content
Log in

An extended biphasic model for charged hydrated tissues with application to the intervertebral disc

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Finite element models for hydrated soft biological tissue are numerous but often exhibit certain essential deficiencies concerning the reproduction of relevant mechanical and electro-chemical responses. As a matter of fact, singlephasic models can never predict the interstitial fluid flow or related effects like osmosis. Quite a few models have more than one constituent, but are often restricted to the small-strain domain, are not capable of capturing the intrinsic viscoelasticity of the solid skeleton, or do not account for a collagen fibre reinforcement. It is the goal of this contribution to overcome these drawbacks and to present a thermodynamically consistent model, which is formulated in a very general way in order to reproduce the behaviour of almost any charged hydrated tissue. Herein, the Theory of Porous Media (TPM) is applied in combination with polyconvex Ogden-type material laws describing the anisotropic and intrinsically viscoelastic behaviour of the solid matrix on the basis of a generalised Maxwell model. Moreover, other features like the deformation-dependent permeability, the possibility to include inhomogeneities like varying fibre alignment and behaviour, or osmotic effects based on the simplifying assumption of Lanir are also included. Finally, the human intervertebral disc is chosen as a representative for complex soft biological tissue behaviour. In this regard, two numerical examples will be presented with focus on the viscoelastic and osmotic capacity of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argoubi M, Shirazi-Adl A (1996) Poroelastic creep response analysis of a lumbar motion segment in compression. J Biomech 29: 1331–1339

    Article  Google Scholar 

  • Arnold DN, Brezzi F, Fortin M (1984) A stable finite element for the stokes equations. Calcolo 21: 337–344

    Article  MATH  MathSciNet  Google Scholar 

  • Ayad S, Weiss JB (1987) Biochemistry of the intervertebral disc. In: Jayson MIV(eds) The lumbar spine and back pain, 3rd edn. Churchill Livingstone, New York, pp 100–137

    Google Scholar 

  • Ayotte DC, Ito K, Perren SM, Tepic S (2000) Direction-dependent constriction flow in a poroelastic solid: The intervertebral disc valve. ASME J Biomech Eng 122: 587–593

    Article  Google Scholar 

  • Bachrach NM, Mow VC, Guilak F (1998) Incompressibility of the solid matrix of articular cartilage under high hydrostatic pressures. J Biomech 31: 445–451

    Article  Google Scholar 

  • Balzani D, Neff P, Schröder J, Holzapfel G (2005) A polyconvex framework for soft biological tissues. Adjustment to experimental data. Int J Solids Struct 43: 6052–6070

    Article  Google Scholar 

  • Biot MA (1941) General theory of three dimensional consolidation. J Appl Phys 12: 155–164

    Article  Google Scholar 

  • Bishop AW (1959) The effective stress principle. Teknisk Ukeblad 39: 859–863

    Google Scholar 

  • Boehler JP (1987) Introduction of the invariant formulation of anisotropic constitutive equations. In: Boehler JP(eds) Applications of tensor functions in solid mechanics, CISM courses and lectures No. 292. Springer, Wien, pp 13–30

    Google Scholar 

  • de Boer R (2000) Theory of Porous Media. Springer, Berlin

    MATH  Google Scholar 

  • Bowen RM (1976) Theory of mixtures. In: Eringen AC(eds) Continuum physics, vol III. Academic Press, New York, pp 1–127

    Google Scholar 

  • Bowen RM (1980) Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci 18: 1129–1148

    Article  MATH  Google Scholar 

  • Braess D (1997) Finite elemente. Springer, Berlin

    MATH  Google Scholar 

  • Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, New York

    MATH  Google Scholar 

  • Diebels S, Ellsiepen P, Ehlers W (1999) Error-controlled Runge-Kutta time integration of a viscoplastic hybrid two-phase model. Technische Mechanik 19: 19–27

    Google Scholar 

  • Donnan FG (1911) Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht dialysierenden Elektrolyten. Ein Beitrag zur physikalisch-chemischen Physiologie. Zeitschrift für Elektrochemie und angewandte physikalische Chemie 17: 572–581

    Google Scholar 

  • Ebara S, Iatridis JC, Setton LA, Foster RJ, Mow VC, Weidenbaum M (1996) Tensile properties of nondegenerate human lumbar anulus fibrosus. Spine 21: 452–461

    Article  Google Scholar 

  • Eberlein R, Holzapfel GA, Schulze-Bauer CAJ (2001) An anisotropic model for annulus tissue and enhanced finite element analysis of intact lumbar disc bodies. Comput Methods Biomech Biomed Eng 4: 209–229

    Article  Google Scholar 

  • Eberlein R, Holzapfel GA, Fröhlich M (2004) Multi-segment FEA of the human lumbar spine including the heterogeneity of the anulus fibrosus. Comput Mech 34: 147–165

    Article  MATH  Google Scholar 

  • Ehlers W (1989) Poröse Medien–ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Habilitation, Forschungsberichte aus dem Fachbereich Bauwesen, Heft 47, Universität-GH-Essen

  • Ehlers W (1991) Toward finite theories of liquid-saturated elasto-plastic Porous Media. Int J Plast 7: 433–475

    Article  MATH  Google Scholar 

  • Ehlers W (1993) Constitutive equations for granular materials in geomechanical context. In: Hutter K(eds) Continuum mechanics in environmental sciences and geophysics, CISM courses and lectures No. 337. Springer, Wien, pp 313–402

    Google Scholar 

  • Ehlers W (2002) Foundations of multiphasic and porous materials. In: Ehlers W, Bluhm J(eds) Porous media: theory, experiments and numerical applications. Springer, Berlin, pp 3–86

    Google Scholar 

  • Ehlers W, Acartürk A (2007) The role of weakly imposed Dirichlet boundary conditions for numerically stable computations of swelling phenomena. Comput Mech (submitted)

  • Ehlers W, Markert B (2001) A linear viscoelastic biphasic model for soft tissues based on the Theory of Porous Media. ASME J Biomech Eng 123: 418–424

    Article  Google Scholar 

  • Ehlers W, Ellsiepen P, Blome P, Mahnkopf D, Markert B (1999) Theoretische und numerische Studien zur Lösung von Rand-und Anfangswertproblemen in der Theorie Poröser Medien, Abschlußbericht zum DFG-Forschungsvorhaben Eh 107/6-2. Bericht Nr. Nr. 99-II-1 aus dem Institut für Mechanik (Bauwesen), Universität Stuttgart

  • Ehlers W, Markert B, Acartürk A (2002) Large strain viscoelastic swelling of charged hydrated porous media. In: Auriault JL, Geindreau C, Royer P, Bloch JF, Boutin C, Lewandowska J (eds) Poromechanics II, Proceedings of the 2nd Biot conference on poromechanics, Swets & Zeitlinger, Lisse (Netherlands), pp 185–191

  • Ehlers W, Markert B, Acartürk A (2005) Swelling phenomena of hydrated porous materials. In: Abousleiman YN, Cheng AHD, Ulm FJ (eds) Poromechanics III, Proceedings of the 3rd Biot Conference on Poromechanics, Balkema Publishers, pp 781–786

  • Ehlers W, Karajan N, Markert B (2006a) A porous media model describing the inhomogeneous behaviour of the human intervertebral disc. Mater Sci Eng Technol 37: 546–551

    Google Scholar 

  • Ehlers W, Markert B, Karajan N (2006b) A coupled FE analysis of the intervertebral disc based on a multiphasic TPM formulation. In: Holzapfel GA, Ogden RW (eds) Mechanics of Biological Tissue. Springer, Berlin, pp 373–386

    Google Scholar 

  • Ehlers W, Karajan N, Wieners C (2007) Parallel 3-d simulations of a biphasic porous media model in spine mechanics. In: Ehlers W, Karajan N (eds) Proceedings of the 2nd GAMM Seminar on Continuum Biomechanics, Report No. II-16 of the Institute of Applied Mechanics (CE), Universität Stuttgart, Germany, pp 11–20

  • Eipper G (1998) Theorie und Numerik finiter elastischer Deformationen in fluidgesättigten Porösen Medien. Dissertation, Bericht Nr.II-1 aus dem Institut für Mechanik (Bauwesen), Universität Stuttgart

  • Elliott DA, Setton LA (2000) A linear material model for fiber-induced anisotropy of the anulus fibrosus. ASME J Biomech Eng 122: 173–179

    Article  Google Scholar 

  • Ellsiepen P (1999) Zeit- und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme pröser Medien. Dissertation, Bericht Nr. II-3 aus dem Institut für Mechanik (Bauwesen), Universität Stuttgart

  • Ellsiepen P, Hartmann S (2001) Remarks on the interpretation of current non-linear finite element analyses as differential–algebraic equations. Int J Numer Methods Eng 51: 679–707

    Article  MATH  Google Scholar 

  • Frijns AJH, Huyghe JM, Janssen JD (1997) A validation of the quadriphasic mixture theory for intervertebral disc tissue. Int J Eng Sci 35: 1419–1429

    Article  MATH  Google Scholar 

  • Frijns AJH, Huyghe JM, Kaasschieter EF, Wijlaars MW (2003) Numerical simulation of deformations and electrical potentials in a cartilage substitute. Biorheology 40: 123–131

    Google Scholar 

  • Gu WY, Mao XG, Foster RJ, Weidenbaum M, Mow VC, Rawlins B (1999) The anisotropic hydraulic permeability of human lumbar anulus fibrosus. Spine 24: 2449–2455

    Article  Google Scholar 

  • Hassanizadeh SM, Gray WG (1987) High velocity flow in porous media. Transp Porous Media 2: 521–531

    Article  Google Scholar 

  • Hayes WC, Bodine AJ (1978) Flow-independent viscoelastic properties of articular cartilage matrix. J Biomech 11: 407–419

    Article  Google Scholar 

  • Holm S, Nachemson A (1983) Variations in the nutrition of the canine intervertebral disc induced by motion. Spine 8: 866–974

    Article  Google Scholar 

  • Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications. Comput Methods Appl Mech Eng 190: 4379–4403

    Article  Google Scholar 

  • Holzapfel GA, Gasser TC, Ogden RW (2004) Comparison of a multi-layer structural model for arterial walls with a Fung-type model, and issues of material stability. ASME J Biomech Eng 126: 264–275

    Article  Google Scholar 

  • Holzapfel GA, Schulze-Bauer CAJ, Feigl G, Regitnig P (2005) Mono-lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechanobiol 3: 125–140

    Article  Google Scholar 

  • Hsieh AH, Wagner DR, Cheng LY, Lotz JC (2005) Dependence of mechanical behavior of the murine tail disc on regional material properties: A parametric finite element study. J Biomech Eng 127: 1158–1167

    Article  Google Scholar 

  • Huyghe JM, Houben GB, Drost MR (2003) An ionised/non-ionised dual porosity model of intervertebral disc tissue. Biomech Model Mechanobiol 2: 3–19

    Article  Google Scholar 

  • Iatridis JC, Weidenbaum M, Setton LA, Mow VC (1996) Is the nucleus pulposus a solid or a fluid? Mechanical behaviors of the human intervertebral disc. Spine 21: 1174–1184

    Article  Google Scholar 

  • Iatridis JC, Setton LA, Weidenbaum M, Mow VC (1997) The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear. J Biomech 30: 1005–1013

    Article  Google Scholar 

  • Iatridis JC, Setton LA, Foster RJ, Rawlins BA, Weidenbaum M, Mow VC (1998) Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression. J Biomech 31: 535–544

    Article  Google Scholar 

  • Iatridis JC, Laible JP, Krag MH (2003) Influence of fixed charge density magnitude and distribution on the intervertebral disc: Applications of a Poroelastic and Chemical Electric (PEACE) model. Trans ASME 125: 12–24

    Google Scholar 

  • Kaasschieter EF, Frijns AJH, Huyghe JM (2003) Mixed finite element modelling of cartilaginous tissues. Math Comput Simul 61: 549–560

    Article  MATH  MathSciNet  Google Scholar 

  • Kleiber M (1975) Kinematics of deformation processes in materials subjected to finite elastic–plastic strains. Int J Eng Sci 13: 513–525

    Article  MATH  Google Scholar 

  • Klisch SM, Lotz JC (1999) Application of a fiber-reinforced continuum theory to multiple deformations of the annulus fibrosus. J Biomech 32: 1027–1036

    Article  Google Scholar 

  • Klisch SM, Lotz JC (2000) A special theory of biphasic mixtures and experimental results for human annulus fibrosus tested in confined compression. ASME J Biomech Eng 122: 180–188

    Article  Google Scholar 

  • Lai WM, Hou JS, Mow VC (1991) A triphasic theory for the swelling and deformation behaviors of articular cartilage. ASME J Biomech Eng 113: 245–258

    Article  Google Scholar 

  • Laible JP, Pflaster DS, Krag MH, Simon BR, Haugh LD (1993) A poroelastic-swelling finite element model with application to the intervertebral disc. Spine 18: 659–670

    Article  Google Scholar 

  • Lanir Y (1987) Biorheology and fluid flux in swelling tissues. I. Bicomponent theory for small deformations, including concentration effects. Biorheology 24: 173–187

    Google Scholar 

  • Lee CK, Kim YE, Lee CS, Hong YM, Jung JM, Goel VK (2000) Impact response of the intervertebral disc in a Finite-Element Model. Spine 25: 2431–2439

    Article  Google Scholar 

  • Lee EH (1969) Elastic–plastic deformation at finite strains. J Appl Mech 36: 1–6

    MATH  Google Scholar 

  • Li LP, Soulhat J, Buschmann MD, Shirazi-Adl A (1999) Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. Clin Biomech 14: 673–682

    Article  Google Scholar 

  • Li LP, Shirazi-Adl A, Buschmann MD (2003) Investigation of mechanical behavior of articular cartilage by fibril reinforced poroelastic models. Biorheology 40: 227–233

    Google Scholar 

  • Lim TH, Hong JH (2000) Poroelastic properties of bovine vertebral trabecular bone. J Orthop Res 18: 671–677

    Article  Google Scholar 

  • Marchand F, Ahmed AM (1990) Investigation of the laminate structure of the lumbar disc anulus. Spine 15: 402–410

    Article  Google Scholar 

  • Markert B (2005) Porous media viscoelasticity with application to polymeric foams. Dissertation, Bericht Nr. II-12 aus dem Institut für Mechanik (Bauwesen), Universität Stuttgart

  • Markert B (2007) A constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continua with application to a high-porosity polyurethane foam. Transp Porous Media 70: 427–450

    Article  MathSciNet  Google Scholar 

  • Markert B, Ehlers W, Karajan N (2005) A general polyconvex strain-energy function for fiber-reinforced materials. Proc Appl Math Mech 5: 245–246

    Article  Google Scholar 

  • Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11: 582–592

    Article  Google Scholar 

  • Mow VC, Hayes WC (1997) Basic orthopaedic biomechanics. Lippincott-Raven, New York

    Google Scholar 

  • Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. ASME J Biomech Eng 102: 73–84

    Article  Google Scholar 

  • Mow VC, Gibbs MC, Lai WM, Zhu WB, Athanasiou KA (1989) Biphasic indentation of articular cartilage. II. A numerical algorithm and an experimental study. J Biomech 22: 853–861

    Article  Google Scholar 

  • Noll W (1958) A mathematical theory of the mechanical behavior of continous media. Arch Rat Mech Anal 2: 197–226

    Article  MATH  Google Scholar 

  • Ochia RS, Ching RP (2002) Hydraulic resistance and permeability in human lumbar vertebral bodies. J Biomech Eng 124: 533–537

    Article  Google Scholar 

  • Parent-Thirion A, Macías EF, Hurley J, Vermeylen G (2007) Fourth European Working Conditions Survey. European Foundation for the Improvement of Living and Working Conditions, Dublin

  • Raspe H, Hueppe A, Neuhauser H (2008) Back pain, a communicable disease?. Int J Epidemiol 37: 69–74

    Article  Google Scholar 

  • Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35: 3455–3482

    Article  MATH  Google Scholar 

  • Riches PE, Dhillon N, Lotz J, Woods AW, McNally DS (2002) The internal mechanics of the intervertebral disc under cyclic loading. J Biomech 35: 1263–1271

    Article  Google Scholar 

  • Rivlin RS (1948) Large elastic deformations of isotropic materials. Proc R Soc Lond Ser A 241: 379–397

    Article  MATH  MathSciNet  Google Scholar 

  • Sandhu RS, Wilson EL (1969) Finite-element analysis of seepage in elastic media. ASCE J Eng Mech Div 95: 641–652

    Google Scholar 

  • Schanz M, Diebels S (2003) A comperative study of biot’s theory and the linear Theory of Porous Media for wave propagation problems. Acta Mech 161: 213–235

    MATH  Google Scholar 

  • Schmidt CO, Raspe H, Pfingsten M, Hasenbring M, Basler HD, Eich W, Kohlmann T (2007) Back pain in the german adult population. Prevalence, severity, and sociodemographic correlations in a multiregional survey. Spine 32: 2005–2011

    Article  Google Scholar 

  • Schröder J, Neff P (2003) Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int J Solids Struct 40: 401–445

    Article  MATH  Google Scholar 

  • Schröder Y, Sivan S, Wilson W, Merkher Y, Huyghe JM, Maroudas A, Baaijens FPT (2007) Are disc pressure, stress and osmolarity affected by intra- and extrafibrillar fluid exchange. J Orthop Res 25: 1317–1324

    Article  Google Scholar 

  • Shirazi-Adl A (1994) Nonlinear stress analysis of the whole lumbar spine in torsion-mechanics of facet articulation. J Biomech 27: 289–299

    Article  Google Scholar 

  • Shirazi-Adl A (2006) Analysis of large compression loads on lumbar spine in felxion and torsion using a novel wrapping element. J Biomech 39: 267–275

    Article  Google Scholar 

  • Shirazi-Adl A, Ahmed AM, Shrivastava SC (1986a) A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J Biomech 19: 331–350

    Article  Google Scholar 

  • Shirazi-Adl A, Ahmed AM, Shrivastava SC (1986) Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine 11: 914–927

    Article  Google Scholar 

  • Skaggs DL, Weidenbaum M, Iatridis JC, Ratcliffe A, Mow VC (1994) Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus. Spine 19: 1310–1319

    Google Scholar 

  • Skempton AW (1960) Significance of Terzaghi’s concept of effective stress (Terzaghi’s discovery of effective stress). In: Bjerrum L, Casagrande A, Peck RB, Skempton AW(eds) From theory to practice in soil mechanics. Wiley, New York, pp 42–53

    Google Scholar 

  • Spencer AJM (1972) Deformations of fiber-reinforced materials. Oxford University Press, NY, USA

    Google Scholar 

  • Spencer AJM (1982) The formulation of constitutive equations for anisotropic solids. In: Boehler JP(eds) Mechanical behavior of anisotropic solids, Proceedings of the Euromech Colloquium, vol 115. Martinus Nijhoff Publishers, The Haque, pp 2–26

    Google Scholar 

  • Spencer AJM (1984) Constitutive theory for strongly anisotropic solids. In: Spencer AJM(eds) Continuum theory of the mechanics of fibre reinforced composites, CISM Courses and Lectures No. 282. Springer, Wien, pp 1–32

    Google Scholar 

  • Sun DN, Gu WY, Guo XE, Lai WM, Mow VC (1999) A mixed finite element formulation of triphasic mechano-electrochemical theory for charged, hydrated biological soft tissues. Int J Numer Methods Eng 45: 1375–1402

    Article  MATH  Google Scholar 

  • Treloar LRG (1975) The physics of rubber elasticity, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  • Truesdell C (1949) A new Definition of a Fluid, II. The Maxwellian fluid. Tech. Rep. P-3553, § 19, US Naval Research Laboratory

  • Urban J, Holm S (1986) Intervertebral disc nutrition as related to spinal movements and fusion. In: Hargens AR(eds) Tissue nutrition and viability. Springer, Berlin, pp 101–119

    Google Scholar 

  • Urban JPG, Roberts S (1996) Intervertebral disc. In: Comper WD(eds) Extracellular matrix, vol 1, Tissue function.. Harwood Academic Publishers, GmbH, pp 203–233

    Google Scholar 

  • van Loon R, Huyghe FM, Wijlaars MW, Baaijens FPT (2003) 3D FE implementation of an incompressible quadriphasic mixture model. Int J Numer Methods Eng 57: 1243–1258

    Article  MATH  Google Scholar 

  • Varga OH (1966) Stress–strain behavior of elastic materials. Interscience, New York

    MATH  Google Scholar 

  • Wieners C (2003) Taylor–Hood elements in 3D. In: Wendland WL, Efendiev M(eds) Analysis and simulation of multified problems. Springer, Berlin, pp 189–196

    Google Scholar 

  • Wieners C, Ehlers W, Ammann M, Karajan N, Markert B (2005) Parallel solution methods for porous media models in biomechanics. Proc Appl Math Mech 5: 35–38

    Article  Google Scholar 

  • Wilson W, van Donkelar CC, Huyghe JM (2005) A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissues. ASME J Biomech Eng 127: 158–165

    Article  Google Scholar 

  • Wu JSS, Chen JH (1996) Clarification of the mechanical behavior of spinal motion segments through a three-dimensional poroelastic mixed finite element model. Med Eng Phys 18: 215–224

    Article  Google Scholar 

  • Zienkiewicz OC, Taylor RL (2000) The finite element method: the basis, vol 1, 5th edn. Butterworth Heinemann, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Ehlers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehlers, W., Karajan, N. & Markert, B. An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech Model Mechanobiol 8, 233–251 (2009). https://doi.org/10.1007/s10237-008-0129-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-008-0129-y

Keywords

Navigation