Skip to main content
Log in

Special Issue on Cartilage (Part II)

  • Editorial
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Anderson DD, Goldsworthy JK, Shivanna K, Grosland NM, Pedersen DR, Thomas TP, Tochigi Y, Marsh JL, Brown TD (2006) Intra-articular contact stress distributions at the ankle throughout stance phase—patient-specific finite element analysis as a metric of degeneration propensity. Biomech Model Mechanobiol 5:82–89

    Article  Google Scholar 

  • Ateshian GA, Costa KD, Hung CT (2006) A theoretical analysis of water transport through chondrocytes. Biomech Model Mechanobiol 6:91–101

    Article  Google Scholar 

  • Baars DC, Rundell SA, Haut RC (2006) Treatment with the non-ionic surfactant poloxamer P188 reduces tunel positive cells in bovine chondral explants exposed to injurious unconfined compression. Biomech Model Mechanobiol 5:133–139

    Article  Google Scholar 

  • Chahine NO, Ateshian GA, Hung CT (2006) The effect of finite compressive strain on chondrocyte viability in statically loaded bovine articular cartilage. Biomech Model Mechanobiol 6:103–111

    Article  Google Scholar 

  • Chowdhury TT, Appleby RN, Salter DM, Bader DA, Lee DA (2006) Integrin-mediated mechanotransduction in IL1b stimulated chondrocytes. Biomech Model Mechanobiol 5:192–201

    Article  Google Scholar 

  • van Donkelaar CC, Huiskes R (2006) The PTHrP-Ihh feedback loop in the embryonic growth plate allows PTHrP to control hypertrophy and Ihh to regulate proliferation. Biomech Model Mechanobiol 6:55–62

    Article  Google Scholar 

  • Haider MA, Schugart RC, Setton LA, Guilak F (2006) A mechano-chemical model for the passive swelling response of an isolated chondron under osmotic loading. Biomech Model Mechanobiol 5:160–171

    Article  Google Scholar 

  • Henderson JH, Fuente Ldl, Romero D, Colnot CI, Huang S, Carter DR, Helms JA (2006) Rapid growth of cartilage rudiments may generate perichondral structures by mechanical induction. Biomech Model Mechanobiol 6:127–137

    Article  Google Scholar 

  • Herzog W, Federico S (2006) Considerations on joint and articular cartilage mechanics. Biomech Model Mechanobiol 5:64–81

    Article  Google Scholar 

  • Huang CY, Deitzer MA, Cheung HS (2006) Effects of fibrinolytic inhibitors on chondrogenesis of bone-marrow derived mesenchymal stem cells in fibrin gels. Biomech Model Mechanobiol 6:5–11

    Article  Google Scholar 

  • Klein TJ, Sah RL (2006) Modulation of depth-dependent properties in tissue-engineered cartilage with a semi-permeable membrane and perfusion: a continuum model of matrix metabolism and transport. Biomech Model Mechanobiol 6:21–32

    Article  Google Scholar 

  • Klisch SM (2006) A bimodular theory for finite deformations: comparison of orthotropic second-order and exponential stress constitutive equations for articular cartilage. Biomech Model Mechanobiol 5:90–101

    Article  Google Scholar 

  • Knight MM, Bomzon Z, Kimmel E, Sharma AM, Lee DA, Bader DL (2006) Chondrocyte deformation induces mitochondrial distortion and heterogeneous intracellular strain fields. Biomech Model Mechanobiol 5:180–191

    Article  Google Scholar 

  • Korhonen RK, Julkunen P, Rieppo J, Lappalainen R, Konttinen YT, Jurvelin JS (2006) Collagen network of articular cartilage modulates fluid flow and mechanical stresses in chondrocyte. Biomech Model Mechanobiol 5:150–159

    Article  Google Scholar 

  • Mauck RL, Byers BA, Yuan X, Tuan RS (2006) Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCs in 3D Culture in response to dynamic loading. Biomech Model Mechanobiol 6:113–125

    Article  Google Scholar 

  • Mouw JK, Imler SM, Levenston ME (2006) Ion-channel regulation of chondrocyte matrix synthesis in 3D culture under static and dynamic compression. Biomech Model Mechanobiol 6:33–41

    Article  Google Scholar 

  • Owen JR, Wayne JS (2006) Influence of a superficial tangential zone over repairing cartilage defects—implications for tissue engineering. Biomech Model Mechanobiol 5:102–110

    Article  Google Scholar 

  • Patwari P, Cheng DM, Cole AA, Kuettner KE, Grodzinsky AJ (2006) Analysis of the relationship between peak stress and proteoglycan loss following injurious compression of human post-mortem knee and ankle cartilage. Biomech Model Mechanobiol 6:83–89

    Article  Google Scholar 

  • Quinn TM, Morel V (2006) Microstructural modelling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage. Biomech Model Mechanobiol 6:73–82

    Article  Google Scholar 

  • Sengers BG, Oomens CWJ, Nguyen TQD, Bader DL (2006) Computational modeling to predict the temporal regulation of chondrocyte metabolism in response to various dynamic compression regimens. Biomech Model Mechanobiol 5:111–122

    Article  Google Scholar 

  • Shieh AC, Koay EJ, Athanasiou KA (2006) Strain-dependent recovery behavior of single chondrocytes. Biomech Model Mechanobiol 5:172–179

    Article  Google Scholar 

  • Torzilli PA, Deng X-H, Ramcharan M (2006) Effect of compressive strain on cell viability in statically loaded articular cartilage. Biomech Model Mechanobiol 5:123–132

    Article  Google Scholar 

  • Upton ML, Guilak F, Laursen TA, Setton LA (2006) Finite element modeling predictions of region-specific cell-matrix mechanics in the meniscus. Biomech Model Mechanobiol 5:140–149

    Article  Google Scholar 

  • Wilson W, Huyghe JM, van Donkelaar CC (2006) Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition. Biomech Model Mechanobiol 6:43–53

    Article  Google Scholar 

  • Yao H, Gu WY (2006) Convection and diffusion in charged hydrated soft tissues: a mixture theory approach. Biomech Model Mechanobiol 6:63–72

    Article  Google Scholar 

  • Yerramalli CS, Chou AI, Miller GJ, Nicoll SB, Chin KR, Elliott DM (2006) The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function. Biomech Model Mechanobiol 6:13–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard A. Ateshian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ateshian, G.A. Special Issue on Cartilage (Part II). Biomech Model Mechanobiol 6, 1–3 (2007). https://doi.org/10.1007/s10237-006-0058-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-006-0058-6

Keywords

Navigation