Skip to main content
Log in

An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

A 3D anatomically based patient-specific finite element (FE) model of patello-femoral (PF) articulation is presented to analyse the main features of patella biomechanics, namely, patella tracking (kinematics), quadriceps extensor forces, surface contact and internal patella stresses. The generic geometries are a subset from the model database of the International Union of Physiological Sciences (IUPS) (http://www.physiome.org.nz) Physiome Project with soft tissue derived from the widely used visible human dataset, and the bones digitised from an anatomically accurate physical model with muscle attachment information. The models are customised to patient magnetic resonance images using a variant of free-form deformation, called ‘host-mesh’ fitting. The continuum was solved using the governing equation of finite elasticity, with the multibody problem coupled through contact mechanics. Additional constraints such as tissue incompressibility are also imposed. Passive material properties are taken from the literature and implemented for deformable tissue with a non-linear micro-structurally based constitutive law. Bone and cartilage are implemented using a ‘St-Venant Kirchoff’ model suitable for rigid body rotations. The surface fibre directions have been estimated from anatomy images of cadaver muscle dissections and active muscle contraction was based on a steady-state calcium-tension relation. The 3D continuum model of muscle, tendon and bone is compared with experimental results from the literature, and surgical simulations performed to illustrate its clinical assessment capabilities (a Maquet procedure for reducing patella stresses and a vastus lateralis release for a bipartite patella). Finally, the model limitations, issues and future improvements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. An interactive computer program developed by the Bioengineering Institute for Continuum Mechanics, Image analysis, Signal processing and System identification.

  2. Non-uniform rational basis functions.

  3. CMISS graphics user interface

References

  • Adachi N, Ochi M, Yamaguchi H, Uchio Y, Kuriwaka M (2002) Vastus lateralis release for painful bipartite patella. Arthroscopy 18(4):404–411

    PubMed  Google Scholar 

  • Ahmed AM, Duncan NA, Tanzer M (1999) In vitro measurement of the tracking pattern of the human patella. J Biomech Eng 121(2):222–228

    Google Scholar 

  • Amis AA, Farahmand F (1996) Recent advances in surgery of the patello-femoral joint and extensor apparatus’. Knee 3:73–105

    Google Scholar 

  • Anderson A (2002) A bipartite patella in a juvenile from a medieval context. Int J Osteoarchaeol 12:297–302

    Google Scholar 

  • Baraff D (1994) Fast contact force computation for nonpenetrating rigid bodies. In: Computer graphics proceedings, annual conference series, SigGraph ‘94’, Orlando, 24–29 July 1994, pp 23–34

  • Bellemans J (2003) Biomechanics of anterior knee pain. Knee 10(2):123–126

    Article  CAS  PubMed  Google Scholar 

  • Bendjaballah MZ, Shirazi-Adl A, Zukor DJ (1995) Biomechanics of the human knee joint in compression: reconstruction, mesh generation and finite element analysis. Knee 2(2):69–79

    Google Scholar 

  • Benvenuti JF, Rakotomanana L, Leyvraz PF, Pioletti DP, Heegaard JH, Genton MG (1997) Displacements of the tibial tuberosity. Effects of the surgical parameters. Clin Orthop 343:224–234

    Article  PubMed  Google Scholar 

  • Bergel DH, Hunter PJ (1979) The mechanics of the heart. In: Hwang HHC, Gross DR, Patel DJ (eds) Quantitative cardiovascular studies, clinical and research applications of engineering principles. University Park Press, Baltimore

    Google Scholar 

  • Brunet ME, Brinker MR, Cook SD, Christakis P, Fong B, Patron L, O’Connor DP (2003) Patellar tracking during simulated quadriceps contraction. Clin Orthop Relat Res 414:266–275

    Article  PubMed  Google Scholar 

  • Buist ML (2001) Modelling cardiac activation from cell to body surface. PhD thesis, University of Auckland, New Zealand

  • Bull AMJ, Katchburian MV, Shih YF, Amis AA (2002) Standardisation of the description of patellofemoral motion and comparison between different techniques. Knee Surg Sports Traumatol Arthrosc 10:184–193

    Article  CAS  PubMed  Google Scholar 

  • Canizares GH, Slesnick FH (2003) Bipartite patella fracture. Arthroscopy 19(2):215–217

    PubMed  Google Scholar 

  • Chen DT, Zeltzer D (1992) Pump it up: computer animation of a biomechanically based model of muscle using the finite element method. Proc SIGGRAPH 26(2):89–98

    Google Scholar 

  • Chen JX, Wechsler H, Pullen JM, Zhu Y, Macmahon EB (2001) Knee surgery assistance: patient model construction, motion simulation, and biomechanical visualisation. IEEE Trans Biomed Eng 48(9):1042–1052

    Article  CAS  PubMed  Google Scholar 

  • Cheng CK, Yao NK, Liu HC (1995) Surgery simulation analysis of anterior advancement of the tibial tuberosity. Clin Biomech 10(3):115–121

    Article  Google Scholar 

  • Christie RG (1997) Numerical modeling of fibre-reinforced thermoplastic sheet forming. PhD thesis, University of Auckland, New Zealand

  • Cohen ZA, Mow VC, Henry JH, Levine WN, Ateshian GA (2003a) Templates of the cartilage layers of the patellofemoral joint and their use in the assessment of osteoarthritic cartilage damage. Osteoarth Cartilage 11:569–579

    Article  CAS  Google Scholar 

  • Cohen ZA, Henry JH, McCarthy DM, Mow VC, Ateshian GA (2003b) Computer simulations of patellofemoral joint surgery: patient-specific models for tuberosity transfer. Am J Sports Med 31:87–98

    PubMed  Google Scholar 

  • Delp SL, Loan JP (1995) A software system to develop and analyze models of musculoskeletal structures. Comput Biol Med 25:21–34

    Article  CAS  PubMed  Google Scholar 

  • Delp SL, Loan JP (2000) A computational framework for simulation and analysis of human and animal movement. IEEE Comput Sci Eng 2(5):46–55

    Google Scholar 

  • Dhaher YY, Kahn LE (2002) The effects of vastus medialis forces on patello-femoral contact: a model based study. J Biomech Eng 124(6):758–767

    Article  PubMed  Google Scholar 

  • Dhaler YY, Delp SL, Rymer WZ (2000) The use of basis functions in modelling joint articular surfaces: application to the knee joint. J Biomech 33:901–907

    Google Scholar 

  • Dong F, Clapworthy G, Krokos M, Yao J (2002) An anatomy based approach to human muscle modeling amd deformation. IEEE Trans Vis Comput Graph 8(2):154–170

    Article  Google Scholar 

  • Eberhardt AW, Keer LM, Lewis JL, Vithoontien V (1990) An analytical model of joint contact. J Biomech Eng 112:407–413

    CAS  PubMed  Google Scholar 

  • Eckstein F, Adam C, Sittek H, Becker C, Milz S, Schulte E, Reiser M, Putz R (1997) Non-invasive determination of cartilage thickness throughout joint surfaces using magnetic resonance imaging. J Biomech 30(3):285–289

    Google Scholar 

  • van Eijden TMGJ, Kouwenhoven E, Vergurg J, Weijs WA (1986) A mathematical model of the patellofemoral joint. J Biomech 19(3):219–229

    Google Scholar 

  • Elias JJ, Wilson DR, Adamson R, Cosgarea AJ (2004) Evaluation of a computational model used to predict the patellofemoral contact pressure distribution. J Biomech 37(3):295–302

    Google Scholar 

  • Farin G (1993) Curves and surfaces for computer aided geometric design. A practical guide, 3rd edn. Academic, Sandiego

    Google Scholar 

  • Fernandez JW, Mithraratne P, Thrupp SF, Tawhai MT, Hunter PJ (2004) Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech Model Mechanobiol 2(3):139–155

    Article  CAS  PubMed  Google Scholar 

  • Fulkerson JP (2002) Diagnosis and treatment of patients with patellofemoral pain. Am J Sports Med 30(3):447–456

    Google Scholar 

  • Gill HS, O’Connor JJ (1996) Biarticulating two-dimensional computer model of the human patellofemoral joint. Clin Biomech 11(2):81–89

    Article  Google Scholar 

  • Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105(2):136–144

    CAS  PubMed  Google Scholar 

  • Hart AN, Minns RJ, Nabhani FN, Muckle DS (1999) An examination of the internal stresses in articular cartilage of the human patella. Knee 6:171–174

    Article  Google Scholar 

  • Hayes WC, Snyder B, Levine BM, Ramaswamy S (1982) Stress–morphology relationships in trabecular bone of the patella. In: Gallagher RH, Simon BR, Johnson PC, Gross JF (eds) Finite elements in biomechanics, chap. 12. Wiley, New York, pp 223–268

  • Heegaard JH, Curnier A (1993) An augmented lagrangian method for discrete large-slip contact problems, Int J Numer Meth Eng 36:569–593

    Google Scholar 

  • Heegaard JH, Leyvraz PF, Curnier A, Rakotomanana L, Huiskes R (1995) The biomechanics of the human patella during passive knee flexion. J Biomech 28(11):1265–1279

    Article  CAS  PubMed  Google Scholar 

  • Heegaard JH, Leyvraz PF, Hovey CB (2001) A computer model to simulate patellar biomechanics following total knee replacement: the effects of femoral component alignment. Clin Biomech 16:415–423

    Article  CAS  Google Scholar 

  • Hefzy MS, Cooke TDV (1996) Review of knee models: 1996 update. Appl Mech Rev 48(10):s187–s193

    Google Scholar 

  • Hefzy MS, Grood ES (1988) Review of knee models. Appl Mech Rev 41(1):1–13

    Google Scholar 

  • Hefzy MS, Yang H (1993) Three-dimensional anatomical model of the human patello-femoral joint to determine patello-femoral motions and contact characteristics. J Biomed Eng 15:289–302

    CAS  PubMed  Google Scholar 

  • Hefzy MS, Kelly BP, Cooke TDV (1998) Kinematics of the knee joint in deep flexion: a radiographic assessment. Med Eng Phys 20:302–307

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa S (1991) Three-dimensional mathematical model analysis of the patello-femoral joint. J Biomech 24(8):659–671

    Google Scholar 

  • Hirokawa S (1993) Biomechanics of the knee joint: a critical review. CRC Crit Rev Biomed Eng 21:79–133

    CAS  Google Scholar 

  • Hirota G (2002) An improved finite element contact model for anatomical simulations. PhD thesis, University of North Carolina, USA

  • Hunter PJ (1995) Myocardial constitutive laws for continuum models of the heart. In: Sideman S, Beyer R (eds) Molecular and subcellular cardiology. Plenum, New York, pp 303–318

    Google Scholar 

  • Hunter PJ, Nash M, Sands GB (1997) Computational biology of the heart. In: Panfilov AV, Holden AV (eds) Computational electromechanics of the heart. Wiley, England, pp 345–407

    Google Scholar 

  • Hunter PJ, Robbins P, Noble D (2002) The IUPS human physiome project. Eur J Physiol 445:1–9

    Article  CAS  Google Scholar 

  • Iossifidis A, Brueton RN (1995) Painful bipartite patella following injury. Injury 26(3):175–176

    Article  CAS  PubMed  Google Scholar 

  • Johnson KL (1985) Contact mechanics. Cambridge University Press, New York

    Google Scholar 

  • King AI (1984) A review of biomechanical models. J Biomech Eng 106:97–104

    Google Scholar 

  • Kuroda R, Kambic H, Valdevit A, Andrish JT (2001) Articular cartilage contact pressure after tibial tuberosity transfer. A cadaveric study. Am J Sports Med 29:403–409

    CAS  PubMed  Google Scholar 

  • Leondes C (2001) Musculoskeletal models and techniques. Biomechanical systems, techniques and applications, vol 3. CRC Press LLC, Florida, pp 1–8

  • Ling ZK, Guo HQ, Boersma S (1997) Analytic study on the kinematic and dynamic behaviors of a knee joint. Med Eng Phys 19(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Lynch HA, Johannessen W, Bey MJ, Elliot DM (2002) Poisson’s ratio and modulus for tendon transverse and longitudinal fiber orientations. In: Proceedings of the 48th annual meeting of the orthopaedic research society, Dallas, p 243

  • Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall, New Jersey

    Google Scholar 

  • Maquet PGJ (1984) Biomechanics of the knee. With application to the pathogenesis and the surgical treatment of osteoarthritis, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Martins JAC, Pires EB, Salvado R, Dinis PB (1998) A numerical model of passive and active behaviour of skeletal muscles. Comput Meth Appl Mech Eng 151:419–433

    Article  Google Scholar 

  • Minns RJ (1989) A loading and stress analysis of the patella. In: Yettram AL (ed) Material properties and stress analysis in biomechanics. Manchester University Press, pp 214–239

  • Minns RJ, Stevens FS (1977) The collagen fibre organisation in human articular cartilage. J Anat 123:437–457

    CAS  PubMed  Google Scholar 

  • Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng 102(1):73–84

    CAS  PubMed  Google Scholar 

  • Nash M (1998) Mechanics and material properties of the heart using an anatomically accurate mathematical model. PhD thesis, University of Auckland, New Zealand

  • Nash MP, Hunter PJ (2000) Computational mechanics of the heart. From Tissue structure to ventricular function. J Elasticity 61:113–141

    Article  Google Scholar 

  • Oden JT (1972) Finite elements of nonlinear continua. McGraw-Hill, New York

    Google Scholar 

  • Powers CM, Lilley JC, Lee TQ (1998) The effects of axial and multi-plane loading of the extensor mechanism on the patellofemoral joint. Clin Biomech 13:616–624

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran. The art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Puso MA, Laursen TA (2002) A 3D contact smoothing method using gregory patches. Int J Num Meth Eng 54(8):1161–1194

    Article  Google Scholar 

  • Sakai N, Luo ZP, Rand JA, An KN (1996) Quadriceps forces and patellar motion in the anatomical model of the patellofemoral joint. Knee 3:1–7

    Google Scholar 

  • Schroder P, Zorin D (1998) Subdivision for modeling and animation. In: SIGGRAPH 98 Course Notes. ACM

  • Sederberg TW, Parry SR, (1986) Free-form deformation of solid geometric models. In: SigGraph ‘86’ conference proceedings. ACM Comput Graph 20(4):151–160

    Google Scholar 

  • Smirk C, Morris H (2003) The anatomy and reconstruction of the medial patellofemoral ligament. Knee 10:221–227

    Article  PubMed  Google Scholar 

  • Stadler M, Holzapfel GA (2004) Subdivision schemes for smooth contact surfaces of arbitrary mesh topolgy in 3D. Int J Numer Meth Eng 60(7):1161–1195

    Article  Google Scholar 

  • Stadler M, Holzapfel GA, Korelc J (2003) Cn continuous modeling of smooth contact surfaces using NURBS and application to 2D problems. Int J Numer Meth Eng 57(15):2177–2203

    Article  Google Scholar 

  • Staubli HU, Schatzmann L, Brunner P, Rincon L, Nolte LP (1999) Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults. Am J Sports Med 27(1):27–34

    CAS  PubMed  Google Scholar 

  • Stevens C (2002) An anatomically-based computational study of cardiac mechanics and myocardial infarction. PhD thesis, University of Auckland, New Zealand

  • Stevens C, Remme E, LeGrice I, Hunter P (2003) Ventricular mechanics in diastole: material parameter sensitivity. J Biomech 36:737–748

    Google Scholar 

  • Teran J, Blemker S, Hing VNT, Fedkiw R (2003) Finite volume methods for the simulation of skeletal muscle. In: ACM Siggraph Eurographics Symposium on computer animation, pp 68–74

  • Thomas OL, Harding ML (1999) The evaluation of tibial tubercle transfer for anterior knee pain. Knee 6:39–42

    Article  Google Scholar 

  • Tumer ST, Engin AU (1993) Three-body segment dynamic model of the human knee. J Biomech Eng 115:350–356

    Google Scholar 

  • Wriggers P (2002) Computational contact mechanics. Wiley, New York

    Google Scholar 

  • Yamaguchi GT, Zajac FE, (1989) A planar model of the knee joint to characterize the knee extensor mechanism. J Biomech 22(1):1–10

    Google Scholar 

  • Zavarise G, Wriggers P, Schrefler BA (1998) A method for solving contact problems. Int J Numer Meth Eng 42(3):473–498

    Article  Google Scholar 

  • Zienkiewicz OC, Taylor RL (1994) The finite element method. Basic formulation and linear problems, 4th edn., vol. 1. McGraw-Hill, Berkshire

Download references

Acknowledgements

The authors would like to acknowledge the important input to this project from the members of the Bioengineering Institute, in particular, Dr Phil Blyth for providing the MR images and Dr Sharon Walt for the motion capture data. Financial assistance was received from the Foundation for Research, Science and Technology New Zealand under NERF contract UOAX0232 (PJH) and a Bright Future scholarship (JWF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Fernandez.

Appendix

Appendix

Table 1 Patella model degrees of freedom
Table 2 Pole-zero material parameters for skeletal muscle, patella and quadriceps tendon
Table 3 Patella bone and cartilage material properties
Table 4 Peak fibrous tissue strain for VL release at various angles

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, J.W., Hunter, P.J. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool. Biomech Model Mechanobiol 4, 20–38 (2005). https://doi.org/10.1007/s10237-005-0072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-005-0072-0

Keywords

Navigation