Skip to main content
Log in

Changes of storm surges in the Bohai Sea derived from a numerical model simulation, 1961–2006

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Using the tide-surge circulation model ADCIRC, the storm surges in the Bohai Sea were hindcasted from 1961 to 2006 after a regional model-based reconstruction of wind conditions. Through comparison with four storm surge cases that happened in the Bohai Sea and long-time observations at four tide gauges in the Yellow Sea, it is concluded that the model is capable of reproducing the conditions of storm surges in the past few decades in this area. The spatial distribution, the seasonal variation, the interdecadal variability, and the long-time trend were analyzed using the model results. Results show that the storm surges in the three bays of the Bohai Sea are more serious than those in other areas. The storm surges exhibit obvious seasonal variations—they are more serious in spring and autumn. Obvious interdecadal variations and long-time decreasing trends take place in the Bohai Sea. Storm surge indices show statistically significant negative correlations to the Arctic Oscillation (AO) and a statistically significant positive correlation to the Siberian High (SH). Linear regression analysis was used to determine a robust link between the indices of the storm surges and the AO and SH. Using this link, conditions of the storm surges from 1900 to 2006 were estimated from the long-time AO and SH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bacopoulos P, Dally WR, Hagen SC, Cox AT (2012) Observations and simulation of winds, surge, and currents on Florida’s east coast during hurricane Jeanne (2004). Coast Eng 60:84–94. doi:10.1016/j.coastaleng.2011.08.010

    Article  Google Scholar 

  • Barcikowska M, Feser F, Von Storch H (2012) Usability of best track data in climate statistics in the western North Pacific. Mon Weather Rev 140:2818–2830. doi:10.1175/MWR-D-11-00175.1

    Article  Google Scholar 

  • Bernier NB, Thompson KR (2006) Predicting the frequency of storm surges and extreme sea levels in the Northwest Atlantic. J Geophys Res Oceans 111:C100009. doi:10.1029/2005JC003168

    Article  Google Scholar 

  • Blain CA, Westerink JJ, Luettich RA (1998) Grid convergence studies for the prediction of hurricane storm surge. Int J Numer Methods Fluids 26:369–401. doi:10.1002/(SICI)10970363(19980228)26:4<369::AID-FLD624>3.0.CO;2-0

    Article  Google Scholar 

  • Bromirski PD, Flick RE, Canyan DR (2003) Storminess variability along the California coast: 1858–2000. J Clim 16:982–993. doi:10.1175/1520-0442(2003)016<0982:SVATCC>2.0.CO;2

    Article  Google Scholar 

  • Church JA, White NJ (2006) A twentieth century acceleration in global sea-level rise. Geophys Res Lett 33:L01602. doi:10.1029/2005GL024826

    Article  Google Scholar 

  • Conte D, Lionello P ((2013)) Characteristics of large positive and negative surges in the Mediterranean Sea and their attenuation in future climate scenarios. Glob Planet Chang 111:159–173. doi:10.1016/j.gloplacha.2013.09.006

    Article  Google Scholar 

  • David W. J. Thompson, John M. Wallace, (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters 25 (9):1297-1300

  • Ding Y (1990) Build-up, air mass transformation and propagation of Siberian high and its relations to cold surge in East Asia. Meteorog Atmos Phys 44:281–292. doi:10.1007/BF01026822

    Article  Google Scholar 

  • Ding Y, Krishnamurti TN (1987) Heat budget of the Siberian high and the winter monsoon. Mon Weather Rev 115:2428–2449. doi:10.1175/1520-0493(1987)115<2428:HBOTSH>2.0.CO;2

    Article  Google Scholar 

  • Ebersole BA, Westerink JJ, Bunya S, Dietrich JC, Cialone MA (2010) Development of storm surge which led to flooding in St. Bernard Polder during Hurricane Katrina. Ocean Eng 37:91–103. doi:10.1016/j.oceaneng.2009.08.013

    Article  Google Scholar 

  • Egbert GD, Bennett AF, Foreman GG (1994) TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res 99(24):821–852. doi:10.1029/94JC01894

    Google Scholar 

  • Feng S (1982) Introduction to storm surge. Science Press, Beijing, p. 241 in Chinese

    Google Scholar 

  • Feng X, Yin B, Yang D (2012) Effect of hurricane paths on storm surge response at Tianjin, China. Estuar Coast Shelf Sci 106:58–68. doi:10.1016/j.ecss.2012.04.032

    Article  Google Scholar 

  • Feng J, Jiang W, Bian C (2014) Numerical prediction of storm surge in the Qingdao area under the impact of climate change. J Ocean Univ China 13:539–551. doi:10.1007/s11802-014-2222-4

    Article  Google Scholar 

  • Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:L6801. doi:10.1029/2012GL051000

    Article  Google Scholar 

  • Gong DY, Ho CH (2002) The Siberian High and climate change over middle to high-latitude Asia. Theor Appl Climatol 72:1–9. doi:10.1007/s007040200008

    Article  Google Scholar 

  • Gong D, Wang S (1999) Long-term variability of the Siberian High and the possible connection to global warming. Acta Geograph Sin 54:125–133

    Google Scholar 

  • Gönnert G, Dube SK, Murty T, Siefert W (2001) Global storm surge: theory, observation and modeling. Die küste 63:623

    Google Scholar 

  • Gregory JM, Martyn PC, Mark CS (2001) Trends in Northern Hemisphere surface cyclone frequency and intensity. J Clim 14(12):2763–2768. doi:10.1175/1520-0442(2001)014<2763:TINHSC>2.0.CO;2

    Article  Google Scholar 

  • Hallegatte S (2007) The use of synthetic hurricane tracks in risk analysis and climate change damage assessment. J Appl Meteorol Climatol 46:1959–1966. doi:10.1175/2007JAMC1532.1

    Article  Google Scholar 

  • Hans von Storch, Francis W. Zwiers (1999) Statistical Analysis in Climate Research. Cambridge University Press,London

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004. doi:10.1029/2010RG000345

    Article  Google Scholar 

  • H von Storch, Jiang W, Furmancyk KK (2015) Storm surge case studies. In J. Ellis and D. Sherman (eds): Coastal and Marine Natural Hazards and Disasters, Elsevier, Amsterdam

  • Jeong J, Ou T, Linderholm HW, Kim B, Kim B, Kug J, Chen D (2011) Recent recovery of the Siberian High intensity. Journal of Geophysical Research: Atmospheres 116:D23102. doi:10.1029/2011JD015904

    Google Scholar 

  • Jones PD (1995) Land surface temperatures—is the network good enough? Climate Change 31:545–558. doi:10.1007/BF01095161

    Article  Google Scholar 

  • Jr RAL, Westerink JJ (1991) A solution for the vertical variation of stress, rather than velocity, in a three-dimensional circulation model. Int J Numer Methods Fluids 12:911–928. doi:10.1002/fld.1650121002

    Article  Google Scholar 

  • Kang SK, Cherniawsky JY, Foreman MGG, So J, Lee SR (2008) Spatial variability in annual sea level variations around the Korean peninsula. Geophys Res Lett 35:L3603. doi:10.1029/2007GL032527

    Article  Google Scholar 

  • Karl TR, Quayle RG, Groisman PY (1993) Detecting climate variations and change: new challenges for observing and data management systems. J Clim 6:1481–1494. doi:10.1175/1520-0442(1993)006<1481:DCVACN>2.0.CO;2

    Article  Google Scholar 

  • Kulkarni A, von Storch H (1995) Monte Carlo experiments on the effect of serial correlation on the Mann-Kendall-test of trends. Meteor Z 4 :82–85NF

    Google Scholar 

  • Langenberg H, Pfizenmayer A, von Storch H, Sündermann J (1999) Storm related sea level variations along the North Sea coast: natural variability and anthropogenic change. Cont Shelf Res 19:821–842. doi:10.1016/S0278-4343(98)00113-7

    Article  Google Scholar 

  • Li X (1955) A study of cold waves in East Asia, offprints of scientific works in modern China-meteorology (1919–1949) (in Chinese). Science Press, Beijing

    Google Scholar 

  • Marcos M, Tsimplis MN, Shaw AGP (2009) Sea level extremes in southern Europe. Journal of Geophysical Research: Oceans 114:C01007. doi:10.1029/2008jc004912

    Article  Google Scholar 

  • Mattocks C, Forbes C (2008) A real-time, event-triggered storm surge forecasting system for the state of North Carolina. Ocean Model 25:95–119. doi:10.1016/j.ocemod.2008.06.008

    Article  Google Scholar 

  • Méndez FJ, Menéndez M, Luceño A, Losada IJ (2007) Analyzing monthly extreme sea levels with a time-dependent GEV model. J Atmos Ocean Technol 24:894–911. doi:10.1175/JTECH2009.1

    Article  Google Scholar 

  • Menéndez M, Woodworth PL (2010) Changes in extreme high water levels based on a quasi-global tide-gauge data set. Journal of Geophysical Research: Ocean 115:C10011. doi:10.1029/2009JC005997

    Article  Google Scholar 

  • Meng XJ, Wu FZ, Du HB, Wang B (2013) Spatio-temporal characteristics of cold wave over Northeast China during 1961-2010. Journal of Arid Land Resources and Environment 27(1):142–147 Chinese in English abstract

    Google Scholar 

  • Mudersbach C, Wahl T, Haigh ID, Jensen J (2013) Trends in high sea levels of German North Sea gauges compared to regional mean sea level changes. Cont Shelf Res 65:111–120. doi:10.1016/j.csr.2013.06.016

    Article  Google Scholar 

  • Palumbo A, Mazzarella A (1982) Mean sea level variations and their practical applications. Journal of Geophysical Research 87 (C6):4249

  • Pascual A, Marcos M, Gomis D (2008) Comparing the sea level response to pressure and wind forcing of two barotropic models: validation with tide gauge and altimetry data. J Geophys Res Oceans 113:C07011. doi:10.1029/2007JC004459

    Article  Google Scholar 

  • Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci 28:929–937. doi:10.1016/S0098-3004(02)00013-4

    Article  Google Scholar 

  • Ratsimandresy AW, Sotillo MG, Carretero Albiach JC, Álvarez Fanjul E, Hajji H (2008) A 44-year high-resolution ocean and atmospheric hindcast for the Mediterranean Basin developed within the HIPOCAS Project. Coast Eng 55:827–842. doi:10.1016/j.coastaleng.2008.02.025

    Article  Google Scholar 

  • Singh OP (2001) Cause-effect relationships between sea surface temperature, precipitation and sea level along the Bangladesh coast. Theor Appl Climatol 68:233–243. doi:10.1007/s007040170048

    Article  Google Scholar 

  • Tsimplis MN, Woodworth PL (1994) The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data. J Geophys Res Oceans 99:16031–16039. doi:10.1029/94JC01115

    Article  Google Scholar 

  • von Storch H, Reichardt H (1997) A scenario of storm surge statistics for the German bight at the expected time of doubled atmospheric carbon dioxide concentration. J Clim 10:2653–2662. doi:10.1175/1520-0442(1997)010<2653:ASOSSS>2.0.CO:2

    Article  Google Scholar 

  • Wang Z, Ding Y (2006) Climate change of the cold wave frequency of China in the last 53 years and the possible reasons. Chinese J Atmos Sci 30:1068–1076 in Chinese with English abstract

    Google Scholar 

  • Weisse R, von Storch H, Callies U, Chrastansky A, Feser F, Grabemann I, Günther H, Plüss A, Stoye T, Tellkamp J, Winterfeldt J, Woth K (2009) Regional meteo-marine reanalyses and climate change projections: results for Northern Europe and potentials for coastal and offshore applications. Bull Am Meteorol Soc 90:849–860. doi:10.1175/2008BAMS2713.1

    Article  Google Scholar 

  • Weisse R, Bellafiore D, Menéndez M, Méndez F, Nicholls RJ, Umgiesser G, Willems P (2014) Changing extreme sea levels along European coasts. Coast Eng 87:4–14. doi:10.1016/j.coastaleng.2013.10.017

    Article  Google Scholar 

  • Winterfeldt J, Geyer B, Weisse R (2011) Using QuickSCAT in the added value assessment of dynamically downscaled wind speed. Int J Climatol 31(7):1028–1039. doi:10.1002/joc.2015

    Article  Google Scholar 

  • Woodworth PL, Blackman DL (2003) Evidence for systematic changes in extreme high water since the mid-1970s. J Clim 17:1190–1197. doi:10.1175/1520-0442(2004)017<1190:EFSCIE>2.0.CO;2

    Article  Google Scholar 

  • Woodworth PL, Blackman DL (2004) Evidence for systematic changes in extreme high waters since the mid-1970s. J Clim 17:1190–1197. doi:10.1175/1520-0442(2004)017<1190:EFSCIE>2.0.CO;2

    Article  Google Scholar 

  • Woodworth PL, Flather RA, Williams JA, Wakelin SL, Jevrejeva S (2007) The dependence of UK extreme sea levels and storm surges on the North Atlantic Oscillation. Cont Shelf Res 27:935–946. doi:10.1016/j.csr.2006.12.007

    Article  Google Scholar 

  • Woth K, Weisse R, von Storch H (2006) Climate change and North Sea storm surge extremes: an ensemble study of storm surge extremes expected in a changed climate projected by four different regional climate models. Ocean Dyn 56:3–15. doi:10.1007/s10236-005-0024-3

    Article  Google Scholar 

  • Wu D, Gao S, Wang Y, Chen X (2011) The atlas of monthly-average wind and air temperature in the Bohai Sea, Yellow Sea and East China Sea (1960–2007). China Ocean University Press, Qingdao

    Google Scholar 

  • Yang G (2000) Historical change and future trends of storm surge disaster in China’s coast area. Journal of natural. Disaster 28:23–30

    Google Scholar 

  • Yin B, Hou Y, Cheng M, Su J, Lin M, Li M (2001) Numerical study of the influence of waves and tide-surge interaction on tide-surges in the Bohai Sea. Chin J Oceanol Limnol 19(2):97–102

    Article  Google Scholar 

  • Zhang H, Sheng J (2015) Examination of extreme sea levels due to storm surges and tide over the Northwest Pacific Ocean. Cont Shelf Res 93:81–97. doi:10.1016/j.csr.2014.12.001

    Article  Google Scholar 

  • Zhang K, Douglas BC, Leatherman SP (2000) Twentieth-century storm activity along the U.S. east coast. J Clim 13:1748–1761. doi:10.1175/1520-0442(2000)013<1748:TCSAAT>2.0.CO;2

    Article  Google Scholar 

  • Zhang X, Walsh JE, Zhang J, Bhatt US, Ikeda M (2004) Climatology and interannual variability of Arctic Cyclone activity: 1948–2002. J Clim 17:2300–2317. doi:10.1175/1520-0442(2004)017<2300:CAIVOA>2.0.CO;2

    Article  Google Scholar 

  • Zhang HM, Reynolds RW, Bates JJ (2006) Blended and gridded high resolution global sea surface wind speed and climatology from multiple satellites: 1987-present. American Meteorological Society 2006 Annual Meeting, Paper #P2.23, Atlanta, GA, January 29–February 2, 2006

  • Zhang Y, Ding Y, Li Q (2012) Cyclogenesis frequency changes of extratropical cyclones in the North Hemisphere and East Asia revealed by ERA40 reanalysis data. Meteorological Monthly 38(6):646–656 Chinese in English abstract

    Google Scholar 

  • Zhao P, Jiang W (2011a) A numerical study of storm surges caused by cold-air outbreaks in the Bohai Sea. Nat Hazards 59:1–15. doi:10.1007/s11069-010-9690-7

    Article  Google Scholar 

  • Zhao P, Jiang W (2011b) A numerical study of the effects of coastal geometry in the Bohai Sea on storm surges induced by cold-air outbreaks. J Ocean Univ China 10(1):9–15. doi:10.1007/s11802-011-1746-0

    Article  Google Scholar 

  • Zhu Q, Lin J, Shou S, Tang D (2000) Principles and methodology of synoptic meteorology, 3rd edn. China Meteorological Press, Beijing

    Google Scholar 

  • Zou X, Alexander LV, Parker D, Caesar J (2006) Variations in severe storms over China. Geophys Res Lett 33:L17701. doi:10.1029/2006GL026131

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely express our thanks to the developers of the ADCIRC model. This work is supported by the China Scholarship Council (No. 201306330027) and Public science and technology research funds projects of ocean (201305020-4), and we also really appreciate the support from Shanhong Gao for providing the wind fields. JF also thanks for the Helmholtz-Zentrum Geesthacht for hospitality during a 24-month visit and for the provision of computing facilities during the time this work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Jiang.

Additional information

Responsible Editor: Birgit Andrea Klein

Appendix

Appendix

1.1 The calculation of the intensity of the Siberian High

Following the work by Gong and Wang (1999), an index I to represent the intensity of Siberian High is used here:

$$ I=\frac{{\displaystyle \sum_{n=1}^N{P}_n{\delta}_n \cos {\varPsi}_n}}{{\displaystyle \sum_{n=1}^N{\delta}_n \cos {\varPsi}_n}} $$

where P n is the sea level pressure at point n, and Ψ n refers to the latitude of point n. When P n  ≥ 1028 hPa, δ n  = 1, and when P n  ≤ 1028 hPa, δ n  = 0. The selected area is bounded by 30° N, 60° E in the southwest and by 70° N, 120° E in the southeast.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., von Storch, H., Weisse, R. et al. Changes of storm surges in the Bohai Sea derived from a numerical model simulation, 1961–2006. Ocean Dynamics 66, 1301–1315 (2016). https://doi.org/10.1007/s10236-016-0986-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-016-0986-3

Keywords

Navigation