Skip to main content
Log in

East Frisian Wadden Sea hydrodynamics and wave effects in an unstructured-grid model

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

An unstructured-grid model (FVCOM) coupled to a surface wave model (FVCOM-SWAVE) with two different setups is used to investigate the hydrodynamic and wave energy conditions during a moderate wind and a storm situation in the southern North Sea. One setup covers the whole North Sea with moderately increased grid resolution at the coast, whereas the other is a very high-resolution Wadden Sea setup that is one-way coupled to the coarser North Sea model. The results of both model setups are validated, compared to each other and analysed with a focus on longshore currents and wave energy. The numerical results show that during storm conditions, strong wave-induced longshore currents occur in front of the East Frisian Wadden Sea islands with current speeds up to 1 m/s. The model setup with the higher resolution around the islands shows even stronger currents than the coarser setup. The wave-current interaction also influences the surface elevation by raising the water level in the tidal basins. The calculated wave energies show large differences between moderate wind and storm conditions with time-averaged values up to 200 kW/m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aiki H, Greatbatch R J (2012) Thickness-weighted mean theory for the effect of surface gravity waves on mean flows in the upper ocean. J Phys Oceanogr 42:725–747

    Article  Google Scholar 

  • Aiki H, Greatbatch R J (2013) The vertical vtructure of the surface wave radiation stress for circulation over a sloping bottom as given by thickness-weighted-mean theory. J Phys Oceanogr 43(1):149–164

    Article  Google Scholar 

  • Aiki H, Greatbatch R J (2014) A new expression for the form stress term in the vertically Lagrangian mean framework for the effect of surface waves on the upper-ocean circulation. J Phys Oceanogr 44(1):3–23

    Article  Google Scholar 

  • Andrews DG, McIntyre ME (1978) An exact theory of nonlinear waves on a Lagrangian-mean flow. J Fluid Mech 89:609–646

    Article  Google Scholar 

  • Ardhuin F, Jenkins AD, Belibassakis KA (2008a) Comments on The Three-Dimensional Current and Surface Wave Equations. J Phys Oceanogr 38(6):1340–1350

  • Ardhuin F, Rascle N, Belibassakis K A (2008b) Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Model 20(1):35–60

    Article  Google Scholar 

  • Bartholomä A, Kubicki A, Badewien T H, Flemming B W (2009) Suspended sediment transport in the German Wadden Sea-seasonal variations and extreme events. Ocean Dyn 59(2):213–225

    Article  Google Scholar 

  • Bennis AC, Ardhuin F (2011) Comments on The depth-dependent current and wave interaction equations: A Revision. J Phys Oceanogr 41(10):2008–2012

    Article  Google Scholar 

  • Benoit M, Marcos F, Becq F (1996) Development of a third generation shallow-water wave model with unstructured spatial meshing. In: Proceedings of the 25th International Conference on Coastal Engineering, ASCE, Orlando, pp. 465–478

  • Bolanos R, Wolf J, Brown J, Osuna P, Monbaliu J, Sanchez-Arcilla A (2008) The POLCOMS-WAM Wave-Current Interaction Model: development and performance in the NW Mediterranean. In: Guedes Soares C, Kolev PK (eds) Maritime industry, ocean engineering and coastal resources: proceedings of the 12th International congress of the international maritime association of the Mediterranean, (IMAM 2007), Varna, Bulgaria, 2-6 September 2007. London, Taylor Francis, 685–691

  • Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions: 1. Model description and validation. J Geophys Res 104(C4):7649–7666

    Article  Google Scholar 

  • Brown J M, Bolaños R, Wolf J (2011) Impact assessment of advanced coupling features in a tide-surge-wave model, POLCOMS-WAM, in a shallow water application. J Mar Syst 87(1):13–24

    Article  Google Scholar 

  • Brown J M, Bolaños R, Wolf J (2013) The depth-varying response of coastal circulation and water levels to 2D radiation stress when applied in a coupled wave-tide-surge modelling system during an extreme storm. Coast Eng 82:102–113

    Article  Google Scholar 

  • Chawla A, Spindler D, Tolman H (2012) 30 Year Wave Hindcasts using WAVEWATCH III with CFSR winds–Phase 1. Tech. Note 302, NOAA/NWS/NCEP/MMAB, 12 pp

  • Chen C, Beardsley R C, Cowles G (2006) An unstructured grid, finite-volume coastal ocean model, FVCOM user manual 2nd edn. SMAST/UMASSD Tech. Rep. 06-0602, 315 pp, School for Marine Science and Technology. University of Massachusetts-Dartmouth, New Bedford. MA

    Google Scholar 

  • Chen C, Liu H, Beardsley R C (2003) An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. J Atmos Oceanic Technol 20(1):159–186

    Article  Google Scholar 

  • Cornett A, Zhang J (2008) Nearshore Wave Energy Resources, Western Vancouver Island, B.C., Technical Report CHC-TR-51, Canadian Hydraulics Centre

  • Dastgheib A, Roelvink J A, Wang Z B (2008) Long-term process-based morphological modeling of the Marsdiep Tidal Basin. Mar Geol 256(1–4):90–100

    Article  Google Scholar 

  • Dissanayake D M P K, Roelvink J A, van der Wegen M (2009) Modelled channel patterns in a schematized tidal inlet. Coastal Eng 56(11–12):1069–1083

    Article  Google Scholar 

  • Fenton J D, McKee W D (1990) On calculating the lengths of water waves. Coastal Eng 14(6):499–513

    Article  Google Scholar 

  • Flemming B W, Bartholomä A (1997) Response of the Wadden Sea to a rising sea level: a predictive empirical model. Dtsch Hydrogr Z 49(2–3):343–353

    Article  Google Scholar 

  • Flemming B W, Delafontaine M T (1994) Biodeposition in a juvenile mussel bed of the East Frisian Wadden Sea (Southern North Sea). Neth J Aquat Ecol 28(3–4):289–297

    Article  Google Scholar 

  • Geuzaine C, Remacle J F (2009) GMSH: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Meth Eng 79(11):1309–1331

    Article  Google Scholar 

  • Holthuijsen LH (2007) Waves in oceanic and coastal waters. Cambridge University Press

  • Krögel F, Flemming B W (1998) Evidence for temperature-adjusted sediment distributions in the back-barrier tidal flats of the East Frisian Wadden Sea (southern North Sea). In: C R Alexander et al. (eds) (1998) Tidalites: processes & products. SEPM Special Publication, no. 61. SEPM, Tulsa, pp. 31–41

  • Lane E M, Restrepo J M, McWilliams J C (2007) Wave-current interaction: a comparison of radiation stress and vortex-force representations. J Phys Oceanogr 37(5):1122–1141

    Article  Google Scholar 

  • Lettmann K A, Wolff J-O, Badewien T H (2009) Modeling the impact of wind and waves on suspended particulate matter fluxes in the East Frisian Wadden Sea (southern North Sea). Ocean Dyn 59(2):239–262

    Article  Google Scholar 

  • Loewe P (2009) System Nordsee—Zustand 2005 im Kontext langzeitlicher Entwicklungen. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie 44

  • Longuet-Higgins MS (1970) Longshore currents generated by obliquely incident sea waves, 1. J Geophys Res 75(33):6778–6789

    Article  Google Scholar 

  • Longuet-Higgins M S, Stewart R W (1962) Radiation stress and mass transport in gravity waves, with application to surf beats'. J Fluid Mech 13(4):481–504

    Article  Google Scholar 

  • Longuet-Higgins M S, Stewart R W (1964) Radiation stresses in water waves: a physical discussion with applications. Deep-Sea Res 11:529–562

    Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415

    Article  Google Scholar 

  • Mellor G (2003) The three-dimensional current and surface wave equations. J Phys Oceanogr 33(9):1978–1989

    Article  Google Scholar 

  • Mellor G (2005) Some consequences of the three-dimensional current and surface equations. J Phys Oceanogr 35(11):2291–2298

    Article  Google Scholar 

  • Mellor G L (2008) The depth-dependent current and wave interaction equations: a revision. J Phys Oceanogr 38(11):2587–2596

    Article  Google Scholar 

  • Mellor G (2011a) Wave radiation stress. Ocean Dyn 61(5):563–568

    Article  Google Scholar 

  • Mellor G (2011b). Corrigendum J Phys Oceanogr 41(7):1417–1418

    Article  Google Scholar 

  • Mellor G (2011c). Reply J Phys Oceanogr 41(10):2013–2015

    Article  Google Scholar 

  • Mellor G (2013) Waves, circulation and vertical dependance. Ocean Dyn 63(4):447–457

    Article  Google Scholar 

  • Mellor G L, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4): 851–875

    Article  Google Scholar 

  • Moghimi S, Klingbeil K, Gräwe U, Burchard H (2013) A direct comparison of a depth-dependent radiation stress formulation and a vortex force formulation within a three-dimensional coastal ocean model. Ocean Model 70:132–144

    Article  Google Scholar 

  • Osuna P, Monbaliu J (2004) Wave-current interaction in the southern North Sea. J Mar Sys 52(1–4):65–87

    Google Scholar 

  • Phillips OM (1977) The dynamics of the upper ocean. Cambridge University Press

  • Pleskachevsky A, Eppel D P, Kapitza H (2009) Interaction of waves, currents and tides, and wave-energy impact on the beach area of Sylt Island. Ocean Dyn 59(3):451–461

    Article  Google Scholar 

  • Qi J, Chen C, Beardsley R C, Perry W, Cowles G W, Lai Z (2009) An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): implementation, validations and applications. Ocean Model 28(1–3):153–166

    Article  Google Scholar 

  • Rascle N, Ardhuin F (2013) A global wave parameter database for geophysical applications. Part 2: model validation with improved source term parameterization. Ocean Model 70:174–188

    Article  Google Scholar 

  • Reuter R, Badewien T H, Bartholomä A, Braun A, Lübben A, Rullkötter J (2009) A hydrographic time series station in the Wadden Sea (southern North Sea). Ocean Dyn 59(2):195–211

    Article  Google Scholar 

  • Roland A, Ardhuin F (2014) On the developments of spectral wave models: numerics and parameterizations for the coastal ocean. Ocean Dyn 64(6):833–846

    Article  Google Scholar 

  • Santamarina Cuneo P, Flemming B W (2000) Quantifying concentration and flux of suspended particulate matter through a tidal inlet of the East Frisian Wadden Sea by acoustic Doppler current profiling. In: B W Flemming et al. (eds) Muddy Coast Dynamics and Resource Management. Proceedings in Marine Science, vol. 2. Elsevier, Amsterdam, pp.39–52

  • Smagorinsky J (1963) General circulation experiments with the primitive equations I. The basic experiment. Mon Wea Rev 91(3):99–164

    Article  Google Scholar 

  • Stanev E V, Flöser G, Wolff J-O (2003a) First- and higher-order dynamical controls on water exchanges between tidal basins and the open ocean. A case study for the East Frisian Wadden Sea. Ocean Dyn 53(3):146–165

    Article  Google Scholar 

  • Stanev E V, Wolff J-O, Burchard H, Bolding K, Flöser G (2003b) On the circulation in the East Frisian Wadden Sea: numerical modeling and data analysis. Ocean Dyn 53(1):27–51

    Article  Google Scholar 

  • Stanev E V, Wolff J-O, Brink-Spalink G (2006) On the sensitivity of the sedimentary system in the East Frisian Wadden Sea to sea-level rise and wave-induced bed shear stress. Ocean Dyn 56(3–4):266–283

    Article  Google Scholar 

  • Stanev E V, Brink-Spalink G, Wolff J-O (2007a) Sediment dynamics in tidally dominated environments controlled by transport and turbulence: a case study for the East Frisian Wadden Sea. J Geophys Res 112(C4)

  • Stanev E V, Flemming B W, Bartholomä A, Staneva J V, Wolff J-O (2007b) Vertical circulation in shallow tidal inlets and back-barrier basins. Cont Shelf Res 27(6):798–831

    Article  Google Scholar 

  • Stanev E V, Grayek S, Staneva J (2008) Temporal and spatial circulation patterns in the East Frisian Wadden Sea. Ocean Dyn 59(2):167–181

    Article  Google Scholar 

  • Staneva J, Stanev E V, Wolff J-O, Badewien T H, Reuter R, Flemming B, Bartholomä A, Bolding K (2009) Hydrodynamics and sediment dynamics in the German Bight. A focus on observations and numerical modelling in the East Frisian Wadden Sea. Cont Shelf Res 29(1):302–319

    Article  Google Scholar 

  • Thornton E B, Guza R T (1986) Surf Zone Longshore Currents and Random Waves: field data and models. J Phys Oceanogr 16(7):1165–1178

    Article  Google Scholar 

  • Timmermann R, Danilov S, Schröter J, Böning C, Sidorenko D, Rollenhagen K (2009) Ocean circulation and sea ice distribution in a finite element global sea ice-ocean model. Ocean Model 27(3-4):114–129

    Article  Google Scholar 

  • Tolman HL (2009) User manual and system documentation of WAVEWATCH-III version 3.14. Tech Rep 276 NOAA-NWS-NCEP-MMAB

  • Van der Wegen M, Dastgheib A, Roelvink J A (2010) Morphodynamic modeling of tidal channel evolution in comparison to empirical PA relationship. Coastal Eng 57(9):827–837

    Article  Google Scholar 

  • Van der Westhuysen J A, van Dongeren A R, Groeneweg J, van Vledder GPh, Peters H, Gautier C, van Nieuwkoop J C C (2012) Improvements in spectral wave modeling in tidal inlet areas. J Geophys Res 117(C11)

  • WAMDI group (1988) The WAM model—a third generation ocean wave prediction model. J Phys Oceanogr 18:1775–1810

    Article  Google Scholar 

  • Wang Z B, Hoekstra P, Burchard H, Ridderinkhof H, De Swart H E, Stive M J F (2012) Morphodynamics of the Wadden Sea and its barrier island system. Ocean Coast Manage 68:39–57

    Article  Google Scholar 

  • Weisse R, von Storch H, Niemeyer H D, Knaack H (2012) Changing north sea storm surge climate: an increasing hazard? Ocean Coast Manage 68:58–68

    Article  Google Scholar 

  • Wu L, Chen C, Guo P, Shi M, Qi J, Ge J (2011) A fvcom-based unstructured grid wave, current, sediment transport model, i. model description and validation. J Ocean Univ China 10(1):1–8

    Article  Google Scholar 

  • Yu Q, Wang Y, Flemming B, Gao S (2012) Modelling the equilibrium hypsometry of back-barrier tidal flats in the German Wadden Sea (southern North Sea). Cont Shelf Res 49:90–99

    Article  Google Scholar 

  • Zijlema M (2010) Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coastal Eng 57(3):267–277

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the Ministry for Science and Culture of Lower Saxony within the network KLIFF—climate impact and adaption research in Lower Saxony, the initiative Earth Science Knowledge Platform (ESKP) operated by the Helmholtz Association and the North-German Supercomputing Alliance (Norddeutscher Verbund zur Förderung des Hoch- und Höchstleistungsrechnens—HLRN). The authors like to thank Changsheng Chen and the other developers of the ocean modelling suite FVCOM for providing the source code of the ocean model, Reinhard Leidl and staff at the cluster HERO (High-End Computing Resource Oldenburg), funded by the Deutsche Forschungsgemeinschaft (DFG) and the Ministry of Science and Culture (MWK) of the State of Lower Saxony, Germany and the people at the BSH, Federal Maritime and Hydrographic Agency of Germany. The authors also like to thank Oliver Bleich and Steffen Rettig for extracting and optimising coastline data and Burghard Flemming for advice on prescriptive linguistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Grashorn.

Additional information

Responsible Editor: Martin Verlaan

This article is part of the Topical Collection on the 16th biennial workshop of the Joint Numerical Sea Modelling Group (JONSMOD) in Brest, France 21–23 May 2012

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grashorn, S., Lettmann, K.A., Wolff, JO. et al. East Frisian Wadden Sea hydrodynamics and wave effects in an unstructured-grid model. Ocean Dynamics 65, 419–434 (2015). https://doi.org/10.1007/s10236-014-0807-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-014-0807-5

Keywords

Navigation