Skip to main content
Log in

Bidisperse filtration problem with non-monotonic retention profiles

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

During deep bed filtration of suspensions and colloids in a porous medium, some particles are retained in the pores and form a fixed deposit. A one-dimensional mathematical model of filtration with particles of two types is considered. Exact solution is derived. The existence and the uniqueness of the solution are proved by the method of characteristics, and a solution in the form of a traveling wave is obtained. The profiles of total and partial retained concentrations, showing the dependence of the retained particles concentrations on the coordinate at a fixed time, are studied. It is shown by Taylor expansions that the retained profiles of large particles decrease monotonically, while the retained profiles of small particles are non-monotonic. At a short time, the profile of small particles decreases monotonically; with increasing time, a maximum point appears on it, moving from the inlet to the outlet of the porous medium. When the maximum point reaches the outlet, the profile becomes monotonically increasing. The condition for the non-monotonicity of the total retained profile is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

No datasets were generated or analyzed for the results of this paper.

Code availability

Python program code for the numerical solution of the filtration problem.

References

  1. Bedrikovetsky, P.: Mathematical Theory of Oil and Gas Recovery: With Applications to ex-USSR Oil and Gas Fields. Springer, Des Moines (2013)

    Google Scholar 

  2. Zeman, L.J., Zydney, A.L.: Microfiltration and Ultrafiltration: Principles and Applications. Marcel Dekker, New York (1996)

    Google Scholar 

  3. Winter, C.L., Tartakovsky, D.M.: Groundwater flow in heterogeneous composite aquifers. Water Resour. Res. 38(8), 1–11 (2002). https://doi.org/10.1029/2001WR000450

    Article  Google Scholar 

  4. Elimelech, M., Gregory, J., Jia, X.: Particle Deposition and Aggregation: Measurement, Modelling and Simulation. Butterworth-Heinemann, New York (2013)

    Google Scholar 

  5. Yoon, J., Mohtar, C.S.E.: Groutability of granular soils using bentonite grout based on filtration model. Transp. Porous Media 102(3), 365–385 (2014). https://doi.org/10.1007/s11242-014-0279-6

    Article  Google Scholar 

  6. Lufingo, M., Ndé-Tchoupé, A.I., Hu, R., Njau, K.N., Noubactep, C.A.: Novel and facile method to characterize the suitability of metallic iron for water treatment. Water 11(12), 2465 (2019). https://doi.org/10.3390/w11122465

    Article  Google Scholar 

  7. Mikhailov, D., Zhvick, V., Ryzhikov, N., Shako, V.: Modeling of rock permeability damage and repairing dynamics due to invasion and removal of particulate from drilling fluids. Transp. Porous Media 121, 37–67 (2018). https://doi.org/10.1007/s11242-017-0947-4

    Article  MathSciNet  Google Scholar 

  8. Sharma, M.M., Yortsos, Y.C.: Network model for deep bed filtration processes. AIChE J. 33(10), 1644–1653 (1987). https://doi.org/10.1002/aic.690331008

    Article  Google Scholar 

  9. Payatakes, A.C., Rajagopalan, R., Tien, C.: Application of porous media models to the study of deep bed filtration. Canad. J. Chem. Eng. 52(6), 722–731 (1974). https://doi.org/10.1002/cjce.5450520605

    Article  Google Scholar 

  10. Jegatheesan, V., Vigneswaran, S.: Deep bed filtration: mathematical models and observations. Crit. Rev. Environ. Sci. Technol. 35(6), 515–569 (2005). https://doi.org/10.1080/10643380500326432

    Article  Google Scholar 

  11. Kuzmina, L.I., Osipov, Y.V.: Deep bed filtration asymptotics at the filter inlet. Procedia Eng. 153, 366–370 (2016). https://doi.org/10.1016/j.proeng.2016.08.129

    Article  Google Scholar 

  12. Khuzhayorov, B., Fayziev, B., Ibragimov, G., Arifin, N.M.: A deep bed filtration model of two-component suspension in dual-zone porous medium. Appl. Sci. 10, 2793 (2020). https://doi.org/10.3390/app10082793

    Article  Google Scholar 

  13. Brady, P.V., Morrow, N.R., Fogden, A., Deniz, V., Loahardjo, N.: Electrostatics and the low salinity effect in sandstone reservoirs. Energy Fuels 29(2), 666–677 (2015). https://doi.org/10.1021/ef502474a

    Article  Google Scholar 

  14. You, Z., Bedrikovetsky, P., Badalyan, A., Hand, M.: Particle mobilization in porous media: temperature effects on competing electrostatic and drag forces. Geophys. Res. Lett. 42(8), 2852–2860 (2015). https://doi.org/10.1002/2015GL063986

    Article  Google Scholar 

  15. Rabinovich, A., Bedrikovetsky, P., Tartakovsky, D.: Analytical model for gravity segregation of horizontal multiphase flow in porous media. Phys. Fluids 32(4), 1–15 (2020). https://doi.org/10.1063/5.0003325

    Article  Google Scholar 

  16. Bradford, S.A., Torkzaban, S., Wiegmann, A.: Pore-scale simulations to determine the applied hydrodynamic torque and colloid immobilization. Vadose Zone J. 10(1), 252–261 (2011). https://doi.org/10.2136/vzj2010.0064

    Article  Google Scholar 

  17. Santos, A., Bedrikovetsky, P., Fontoura, S.: Analytical micro model for size exclusion: pore blocking and permeability reduction. J. Membr. Sci. 308, 115–127 (2008). https://doi.org/10.1016/j.memsci.2007.09.054

    Article  Google Scholar 

  18. You, Z., Badalyan, A., Bedrikovetsky, P.: Size-exclusion colloidal transport in porous media–stochastic modeling and experimental study. SPE J. 18, 620–633 (2013). https://doi.org/10.2118/162941-PA

    Article  Google Scholar 

  19. Ramachandran, V., Fogler, H.S.: Plugging by hydrodynamic bridging during flow of stable colloidal particles within cylindrical pores. J. Fluid Mech. 385, 129–156 (1999). https://doi.org/10.1017/S0022112098004121

    Article  MATH  Google Scholar 

  20. Tartakovsky, D.M., Dentz, M.: Diffusion in porous media: phenomena and mechanisms. Transp. Porous Media 130, 105–127 (2019). https://doi.org/10.1007/s11242-019-01262-6

    Article  MathSciNet  Google Scholar 

  21. Tien, C.: Principles of Filtration. Elsevier, Oxford (2012)

    Google Scholar 

  22. Herzig, J.P., Leclerc, D.M., Le Goff, P.: Flow of suspensions through porous media—application to deep filtration. J. Ind. Eng. Chem. 62(8), 8–35 (1970). https://doi.org/10.1021/ie50725a003

    Article  Google Scholar 

  23. Vyazmina, E.A., Bedrikovetskii, P.G., Polyanin, A.D.: New classes of exact solutions to nonlinear sets of equations in the theory of filtration and convective mass transfer. Theor. Found. Chem. Eng. 41(5), 556–564 (2007). https://doi.org/10.1134/S0040579507050168

    Article  Google Scholar 

  24. Polyanin, A., Zaitsev, V.: Handbook of Nonlinear Partial Differential Equations. Chapman & Hall/CRC Press, Boca Raton (2012)

    MATH  Google Scholar 

  25. Polyanin, A.D., Manzhirov, A.V.: Handbook of Mathematics for Engineers and Scientists. CRC Press, Boca Raton (2006). https://doi.org/10.1201/9781420010510

    Book  MATH  Google Scholar 

  26. Leisi, R., Bieri, J., Roth, N.J., Ros, C.: Determination of parvovirus retention profiles in virus filter membranes using laser scanning microscopy. J. Membr. Sci. 603, 118012 (2020). https://doi.org/10.1016/j.memsci.2020.118012

    Article  Google Scholar 

  27. Kuzmina, L.I., Osipov, Y.V.: Calculation of filtration of polydisperse suspension in a porous medium. MATEC Web Conf. 86, 01005 (2016). https://doi.org/10.1051/matecconf/20168601005

    Article  Google Scholar 

  28. Tong, M., Johnson, W.P.: Colloid population heterogeneity drives hyperexponential deviation from classic filtration theory. Int. J. Environ. Sci. Technol. 41, 493–499 (2007). https://doi.org/10.1021/es061202j

    Article  Google Scholar 

  29. Li, X., Lin, C.L., Miller, J.D., Johnson, W.P.: Role of grain-to-grain contacts on profiles of retained colloids in porous media in the presence of an energy barrier to deposition. Int. J. Environ. Sci. Technol. 40, 3769–3774 (2006). https://doi.org/10.1021/es052501w

    Article  Google Scholar 

  30. Liang, Y., Bradford, S.A., Simunek, J., Heggen, M., Vereecken, H., Klumpp, E.: Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil. Int. J. Environ. Sci. Technol. 47, 12229–12237 (2013). https://doi.org/10.1021/es402046u

    Article  Google Scholar 

  31. Wang, D., Ge, L., He, J., Zhang, W., Jaisi, D.P., Zhou, D.: Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol. J. Contam. Hydrol. 164, 35–48 (2014). https://doi.org/10.1016/j.jconhyd.2014.05.007

    Article  Google Scholar 

  32. Li, X., Johnson, W.P.: Nonmonotonic variations in deposition rate coefficients of microspheres in porous media under unfavorable deposition conditions. Int. J. Environ. Sci. Technol. 39, 1658–1665 (2005). https://doi.org/10.1021/es048963b

    Article  Google Scholar 

  33. Yuan, H., Shapiro, A.A.: A mathematical model for non-monotonic deposition profiles in deep bed filtration systems. Chem. Eng. J. 166, 105–115 (2011). https://doi.org/10.1016/j.cej.2010.10.036

    Article  Google Scholar 

  34. Malgaresi, G., Collins, B., Alvaro, P., Bedrikovetsky, P.: Explaining non-monotonic retention profiles during flow of size-distributed colloids. Chem. Eng. J. 375, 121984 (2019). https://doi.org/10.1016/j.cej.2019.121984

    Article  Google Scholar 

  35. Safina, G.: Calculation of retention profiles in porous medium. Lecture Notes Civ. Eng. 170, 21–28 (2021). https://doi.org/10.1007/978-3-030-79983-0_3

    Article  Google Scholar 

  36. Kuzmina, L.I., Osipov, Yu.V., Astakhov, M.D.: Filtration of 2-particles suspension in a porous medium. J. Phys: Conf. Ser. 1926, 012001 (2021). https://doi.org/10.1088/1742-6596/1926/1/012001

    Article  Google Scholar 

  37. Guedes, R.G., Al-Abduwani, F.A., Bedrikovetsky, P., Currie, P.K.: Deep-bed filtration under multiple particle-capture mechanisms. SPE J. 14(03), 477–487 (2009). https://doi.org/10.2118/98623-PA

    Article  Google Scholar 

  38. Shapiro, A.A., Bedrikovetsky, P.G.: Elliptic random-walk equation for suspension and tracer transport in porous media. Physica A 387(24), 5963–5978 (2008). https://doi.org/10.1016/j.physa.2008.07.013

    Article  Google Scholar 

  39. Kuzmina, L.I., Osipov, Y.V., Gorbunova, T.N.: Asymptotics for filtration of polydisperse suspension with small impurities. Appl. Math. Mech. (English Edn.) 42(1), 109–126 (2021). https://doi.org/10.1007/s10483-021-2690-6

    Article  MathSciNet  MATH  Google Scholar 

  40. Galaguz, Yu.P., Kuzmina, L.I., Osipov, Yu.V.: Problem of deep bed filtration in a porous medium with the initial deposit. Fluid Dyn. 54(1), 85–97 (2019). https://doi.org/10.1134/S0015462819010063

    Article  MathSciNet  MATH  Google Scholar 

  41. Bedrikovetsky, P., Osipov, Y., Kuzmina, L., Malgaresi, G.: Exact Upscaling for transport of size-distributed colloids. Water Resour. Res. 55(2), 1011–1039 (2019). https://doi.org/10.1029/2018WR024261

    Article  Google Scholar 

  42. Nazaikinskii, V.E., Bedrikovetsky, P.G., Kuzmina, L.I., Osipov, Y.V.: Exact solution for deep bed filtration with finite blocking time. SIAM J. Appl. Math. 80(5), 2120–2143 (2020). https://doi.org/10.1137/19M1309195

    Article  MathSciNet  MATH  Google Scholar 

  43. Tikhonov, A.N., Samarskii, A.A.: Equations of Mathematical Physics. Pergamon Press, Oxford (1963)

    MATH  Google Scholar 

  44. Osipov, Yu., Safina, G., Galaguz, Yu.: Calculation of the filtration problem by finite differences methods. MATEC Web Conf. 251, 04021 (2018). https://doi.org/10.1051/matecconf/201825104021

    Article  Google Scholar 

  45. Kuzmina, L.I., Osipov, Y.V., Zheglova, Y.G.: Analytical model for deep bed filtration with multiple mechanisms of particle capture. Int. J. Non-Linear Mech. 105, 242–248 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.05.015

    Article  Google Scholar 

  46. Chequer, L., Nguyen, C., Loi, G., Zeinijahromi, A., Bedrikovetsky, P.: Fines migration in aquifers: production history treatment and well behaviour prediction. J. Hydrol. 602, 126660 (2021). https://doi.org/10.1016/j.jhydrol.2021.126660

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri V. Osipov.

Ethics declarations

Ethics

We affirm that the submission represents original work that has not been published previously and is not currently being considered or submitted to another journal, until a decision has been made. Also, we confirm that each author has seen and approved the contents of the submitted manuscript.

Conflict of interest

The authors declare that there are no conflicts of interest and competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmina, L.I., Osipov, Y.V. & Astakhov, M.D. Bidisperse filtration problem with non-monotonic retention profiles. Annali di Matematica 201, 2943–2964 (2022). https://doi.org/10.1007/s10231-022-01227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-022-01227-5

Keywords

Mathematics Subject Classification

Navigation