Skip to main content

Advertisement

Log in

Nonexistence of positive solutions for nonlinear parabolic Robin problems and Hardy–Leray inequalities

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

The purpose of this paper is twofold. First is the study of the nonexistence of positive solutions of the parabolic problem

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{\partial u}{\partial t}=\varDelta _{p} u+V(x)u^{p-1}+ \lambda u^{q} &{}\quad {\text{in}}\; \varOmega \times (0, T ) ,\\ u(x,0)=u_{0}(x)\ge 0 &{}\quad {\text{in}} \; \varOmega ,\\ |\nabla u|^{p-2}\frac{\partial u}{\partial \nu }=\beta |u|^{p-2} u &{}\quad {\text{on}}\; \partial \varOmega \times (0,T), \end{array}\right. } \end{aligned}$$

where \(\varOmega \) is a bounded domain in \({\mathbb{R}}^{N}\) with smooth boundary \(\partial \varOmega \), \(\varDelta _{p} u= {\text{div}}(|\nabla u|^{p-2} \nabla u)\) is the p-Laplacian of u, \(V\in L_{\mathrm{loc}}^{1}(\varOmega )\), \(\beta \in L_{\mathrm{loc}}^{1}(\partial \varOmega )\), \(\lambda \in {\mathbb{R}}\), the exponents p and q satisfy \(1<p<2\), and \(q>0\). Then, we present some sharp Hardy and Leray type inequalities with remainder terms that provide us concrete potentials to use in the partial differential equation we are interested in.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdellaoui, B., Colorado, E., Peral, I.: Some improved Caffarelli–Kohn–Nirenberg inequalities. Calc. Var. PDE 23, 327–345 (2005)

    Article  MathSciNet  Google Scholar 

  2. Abdellaoui, B., Colorado, E., Peral, I.: Existence and nonexistence results for a class of parabolic equations with mixed boundary conditions. Commun. Pure Appl. Anal. 5, 29–54 (2006)

    Article  MathSciNet  Google Scholar 

  3. Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York-London (1975)

    MATH  Google Scholar 

  4. Adimurthi, Chaudhuri, N., Ramaswamy, M.: An improved Hardy–Sobolev inequality and its application. Proc. Am. Math. Soc. 130, 489–505 (2002)

    Article  MathSciNet  Google Scholar 

  5. Adimurthi, Sandeep, K.: Existence and non-existence of the first eigenvalue of the perturbed Hardy–Sobolev operator. Proc. R. Soc. Edinb. Sect. A 132, 1021–1043 (2002)

    Article  MathSciNet  Google Scholar 

  6. Afrouzi, G.A., Brown, K.J.: On principal eigenvalues for boundary value problems with indefinite weight and Robin boundary conditions. Proc. Am. Math. Soc. 127, 125–130 (1999)

    Article  MathSciNet  Google Scholar 

  7. Aguilar Crespo, J.A., Peral, I.: Global behaviour of the Cauchy problem for some critical nonlinear parabolic equations. SIAM J. Math. Anal. 31, 1270–1294 (2000)

    Article  MathSciNet  Google Scholar 

  8. Baras, P., Goldstein, J.A.: The heat equation with a singular potential. Trans. Am. Math. Soc. 284, 121–139 (1984)

    Article  MathSciNet  Google Scholar 

  9. Cabré, X., Martel, Y.: Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier. C. R. Acad. Sci. Paris Sér. I Math. 329, 973–978 (1999)

    Article  MathSciNet  Google Scholar 

  10. Cowan, C.: Optimal Hardy inequalities for general elliptic operators with improvements. Commun. Pure Appl. Anal. 9, 109–140 (2010)

    Article  MathSciNet  Google Scholar 

  11. Cuesta, M., Leadi, L.: Weighted eigenvalue problems for quasilinear elliptic operators with mixed Robin–Dirichlet boundary conditions. J. Math. Anal. Appl. 422, 1–26 (2015)

    Article  MathSciNet  Google Scholar 

  12. Fujita, H.: On the blowing up of solutions of the Cauchy problem for \(u_t=\Delta u+u^{1+\alpha }\). J. Fac. Sci. Univ. Tokyo Sect. 1(13), 109–124 (1966)

    Google Scholar 

  13. Garcia Azorero, J., Peral, I.: Hardy inequalities and some critical elliptic and parabolic problems. J. Differ. Equ. 144, 441–476 (1998)

    Article  MathSciNet  Google Scholar 

  14. Goldstein, G.R., Goldstein, J.A., Kombe, I.: Nonlinear parabolic equations with singular coefficient and critical exponent. Appl. Anal. 84, 571–583 (2005)

    Article  MathSciNet  Google Scholar 

  15. Goldstein, J.A., Hauer, D., Rhandi, A.: Existence and nonexistence of positive solutions of p-Kolmogorov equations perturbed by a Hardy potential. Nonlinear Anal. 131, 121–154 (2016)

    Article  MathSciNet  Google Scholar 

  16. Goldstein, J.A., Kombe, I.: Nonlinear degenerate parabolic differential equations with the singular lower order term. Adv. Differ. Equ. 10, 1153–1192 (2003)

    MATH  Google Scholar 

  17. Goldstein, J.A., Zhang, Q.S.: Linear parabolic equations with strong singular potentials. Trans. Am. Math. Soc. 355, 197–211 (2003)

    Article  MathSciNet  Google Scholar 

  18. Hayakawa, K.: On the nonexistence of global solutions of some semilinear parabolic equations. Proc. Jpn. Acad. 49, 503–525 (1973)

    MathSciNet  MATH  Google Scholar 

  19. Kombe, I.: The linear heat equation with highly oscillating potential. Proc. Am. Math. Soc. 132, 2683–2691 (2004)

    Article  MathSciNet  Google Scholar 

  20. Kombe, I., Özaydin, M.: Hardy–Poincare, Rellich and uncertainty principle inequalities on Riemannian manifolds. Trans. Am. Math. Soc. 365, 5035–5050 (2013)

    Article  MathSciNet  Google Scholar 

  21. Leray, J.: Étude de diverses équations intégrales non linéaires et de quelques problémes que pose l’hydrodynamique. J. Math. Pures Appl. Sér. 12, 1–82 (1933)

    MATH  Google Scholar 

  22. Lindqvist, P.: On the equation div\((|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2} u = 0\). Proc. Am. Math. Soc. 109, 157–164 (1990)

    MATH  Google Scholar 

  23. Qi, Y.W., Wang, M.X.: Critical exponents of quasilinear parabolic equations. J. Math. Anal. Appl. 267, 264–280 (2002)

    Article  MathSciNet  Google Scholar 

  24. Vazquez, J.L., Zographopoulos, N.B.: Functional aspects of the Hardy inequality: appearance of a hidden energy. In: Pinelas, S., Chipot, M., Dosla, Z. (eds.) Differential and Difference Equations with Applications. Springer Proceedings in Mathematics and Statistics, vol. 47, pp. 653–665. Springer, New York (2013)

    Chapter  Google Scholar 

  25. Weissler, F.B.: Existence and nonexistence of global solutions for a semilinear heat equation. Israel J. Math. 38, 29–40 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisèle Ruiz Goldstein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldstein, G.R., Goldstein, J.A., Kömbe, I. et al. Nonexistence of positive solutions for nonlinear parabolic Robin problems and Hardy–Leray inequalities. Annali di Matematica 201, 2927–2942 (2022). https://doi.org/10.1007/s10231-022-01226-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-022-01226-6

Keywords

Mathematics Subject Classification

Navigation