Skip to main content
Log in

Protistan grazing and viral lysis losses of bacterial carbon production in a large mesotrophic lake (Lake Biwa)

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

The grazing and lysis mortalities of planktonic bacteria were estimated using the modified dilution method and respiratory quinone (RQ) analysis in mesotrophic Lake Biwa, Japan. The planktonic bacterial assemblages in the lake consisted of various RQ subgroups with different growth and mortality rates. The sum of total bacterial mortalities due to protistan grazing and viral lysis accounted for 96.6 % (range 89.0–107.2 %) of daily total bacterial production. This is the first report that successfully demonstrates a balanced relationship between bacterial production and losses using the modified dilution method in a lake. The growth rates of ubiquinone (UQ)-containing bacteria were faster than those of menaquinone-containing bacteria. Especially the dominant and fastest growing bacterial groups in the present study were the bacterial groups containing UQ-8 or UQ-10. The sum of their production and loss accounted for 60 % of carbon fluxes within the microbial loop. Thus, a large portion of the carbon cycling through the bacterial community in Lake Biwa can be explained by the carbon fluxes through dominant bacterial groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amy PS, Morita RY (1983) Starvation-survival patterns of sixteen freshly isolated open-ocean bacteria. Appl Environ Microbiol 45:1109–1115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Baudoux AC, Veldhuis MJW, Noordeloos AAM, van Noort G, Brussaard CPD (2008) Estimates of virus- vs. grazing induced mortality of picophytoplankton in the North Sea during summer. Aquat Microb Ecol 52:69–82

    Article  Google Scholar 

  • Bettarel Y, Amblard C, Sime-Ngando T, Carrias J-F, Sargos D, Garabétian F, Lavandier P (2003) Viral lysis, flagellate grazing potential, and bacterial production in Lake Pavin. Microb Ecol 45:119–127

    Article  CAS  PubMed  Google Scholar 

  • Bird D, Kalff J (1993) Protozoan grazing and the size–activity structure of limnetic bacterial communities. Can J Fish Aquat Sci 50:370–380

    Article  Google Scholar 

  • Bouvier T, del Giorgio PA (2003) Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiol Ecol 44:3–15

    Article  CAS  PubMed  Google Scholar 

  • Bratbak G, Heldal M, Norland S, Thingstad TF (1990) Viruses as partners in spring bloom microbial trophodynamics. Appl Environ Microbiol 56:1400–1405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caron DA (1983) Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl Environ Microbiol 46:491–498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cole JJ, Findlay SS, Pace ML (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Prog Ser 43:1–10

    Article  Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Constanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  Google Scholar 

  • del Giorgio PA, Gasol JM (2008) Physiological structure and single-cell activity in marine bacterioplankton. In: Kirchman DL (ed) Microbial ecology of the oceans, 2nd edn. Wiley, New York, pp 243–298

    Chapter  Google Scholar 

  • del Girogio PA, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Ann Rev Ecol Syst 29:503–541

    Article  Google Scholar 

  • Ducklow HW (2000) Bacterial production and biomass in the oceans. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, New York, pp 85–120

    Google Scholar 

  • Evans C, Archer SD, Jacquet S, Wilson WH (2003) Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp. population. Aquat Microb Ecol 30:207–219

    Article  Google Scholar 

  • Glöckner FO, Fuchs BM, Amann R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726

    PubMed Central  PubMed  Google Scholar 

  • Gobler CJ, Hutchins DA, Fisher NS, Cosper EM, Sanudo-Wilhelmy SA (1997) Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte. Limnol Oceanogr 42:1492–1504

    Article  CAS  Google Scholar 

  • Gobler CJ, Davis TW, Deonarine SN, Saxton MA, Lavrentyev PJ, Jochem FJ, Wilhelm SW (2008) Grazing and virus-induced mortality of microbial populations before and during the onset of annual hypoxia in Lake Erie. Aquat Microb Ecol 51:117–128

    Article  Google Scholar 

  • Hahn MW, Kasalický V, Jezbera J, Brandt U, Jezberová J, Šimek K (2010a) Limnohabitans curvus gen. nov., sp. nov., a planktonic bacterium isolated from a freshwater lake. Int J Syst Evol Microbiol 60:1358–1365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hahn MW, Kasalický V, Jezbera J, Brandt U, Šimek K (2010b) Limnohabitans australis sp. nov., isolated from a freshwater pond, and emended description of the genus Limnohabitans. Int J Syst Evol Microbiol 60:2946–2950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hedrick DB, White DC (1986) Microbial respiratory quinones in the environment. J Microbiol Meth 5:243–254

    Article  CAS  Google Scholar 

  • Herdendorf CE (1990) Distribution of the world’s large lakes. In: Tilzer MM, Serruya C (eds) Large lakes: ecological structure and function. Springer, Berlin, pp 3–38

    Chapter  Google Scholar 

  • Hiraishi A (1999) Isoprenoid quinones as biomarkers of microbial populations in the environment. J Biosci Bioeng 88:449–460

    Article  CAS  PubMed  Google Scholar 

  • Hiraishi A, Kato K (1999) Quinone profiles in lake sediments: implications for microbial diversity and community structures. J Gen Appl Microbiol 45:221–227

    Article  CAS  PubMed  Google Scholar 

  • Hu H-Y, Fujie K, Urano K (1999) Development of a novel solid phase extraction method for the analysis of bacterial quinones in activated sludge with a higher reliability. J Biosci Bioeng 87:378–382

    Article  CAS  PubMed  Google Scholar 

  • Jacquet S, Domaizon I, Personnic S, Pradeep Ram AS, Hedal M, Duhamel S, Sime-Ngando T (2005) Estimates of protozoan- and viral-mediated mortality of bacterioplankton in Lake Bourget (France). Freshw Biol 50:627–645

    Article  CAS  Google Scholar 

  • Kasalický V, Jezbera J, Šimek K, Hahn MW (2010) Limnohabitans planktonicus sp. nov. and Limnohabitans parvus sp. nov., planktonic betaproteobacteria isolated from a freshwater reservoir, and emended description of the genus Limnohabitans. Int J Syst Evol Microbiol 60:2710–2714

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim C, Nishimura Y, Nagata T (2006) Role of dissolved organic matter in hypolimnetic mineralization of carbon and nitrogen in a large, monomictic lake. Limnol Oceanogr 51:70–78

    Article  CAS  Google Scholar 

  • Landry MR, Hassett RP (1982) Estimating the grazing impact of marine micro-zooplankton. Mar Biol 67:283–288

    Article  Google Scholar 

  • Landry MR, Haas LW, Fagerness VL (1984) Dynamics of microbial plankton communities: experiments in Kaneohe Bay, Hawaii. Mar Ecol Prog Ser 16:127–133

    Article  CAS  Google Scholar 

  • Maranger R, Bird DF (1995) Viral abundance in aquatic systems: a comparison between marine and fresh waters. Mar Ecol Prog Ser 121:217–226

    Article  Google Scholar 

  • Miki T, Yokokawa T, Nagata T, Yamamura N (2008) Immigration of prokaryotes to local environments enhances remineralization efficiency of sinking particles: a metacommunity model. Mar Ecol Prog Ser 366:1–14

    Article  CAS  Google Scholar 

  • Moran R, Porath D (1980) Chlorophyll determination in intact tissues using N,N-dimethylformamide. Plant Physiol 65:478–479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagata T (1987) Production rate of planktonic bacteria in the north basin of Lake Biwa, Japan. Appl Environ Microbiol 53:2872–2882

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagata T (1988) The microflagellate–picoplankton food linkage in the water column of Lake Biwa. Limnol Oceanogr 33:504–517

    Article  Google Scholar 

  • Nagata T (1990) Contribution of picoplankton to the grazer food chain of Lake Biwa. In: Tilzer MM, Serruya C (eds) Large lakes: ecological structure and function. Springer, Berlin, pp 526–539

    Chapter  Google Scholar 

  • Nagata T, Kumagai M, Yoshiyama K (2012) Ondanka no kosho-gaku. Kyoto University Press, Kyoto (in Japanese)

    Google Scholar 

  • Nakano S-I (1992) Changes in bacterioplankton production and dominant algal species in the north basin of Lake Biwa. Jpn J Limnol 53:145–149

    Article  Google Scholar 

  • Nishimura Y, Nagata T (2007) Alphaproteobacterial dominance in a large mesotrophic lake (Lake Biwa, Japan). Aquat Microb Ecol 48:231–240

    Article  Google Scholar 

  • Nishimura Y, Kim C, Nagata T (2005) Vertical and seasonal variations of bacterioplankton subgroups with different nucleic acid contents: possible regulation by phosphorus. Appl Microbiol 71:5828–5836

    CAS  Google Scholar 

  • Noble RT, Fuhrman JA (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118

    Article  Google Scholar 

  • Patel A, Nobel RT, Steele JA, Schwalbach MS, Hewson I, Fuhrman JA (2008) Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I. Nat Protoc 2:269–276

    Article  Google Scholar 

  • Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3:537–546

    Article  CAS  PubMed  Google Scholar 

  • Pernthaler J, Glöckner FO, Unterholzner S, Alfreider A, Psenner R, Amann R (1998) Seasonal community and population dynamics of pelagic Bacteria and Archaea in a high mountain lake. Appl Environ Microbiol 64:4299–4306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Personnic S, Domaizon I, Sime-Ngando T, Jacquet S (2009) Seasonal variations of microbial abundances and virus- versus flagellate-induced mortality of picoplankton in three peri-alphine lakes. J Plankton Res 31:1161–1177

    Article  Google Scholar 

  • Pirlot S, Unrein F, Descy JP, Servais P (2007) Fate of heterotrophic bacteria in Lake Tanganyika (East Africa). FEMS Microbial Ecol 62:354–364

    Article  CAS  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Pradeep Ram AS, Nishimura Y, Tomaru Y, Nagasaki K, Nagata T (2010) Seasonal variation in viral-induced mortality of bacterioplankton in the water column of a large mesotrophic lake (Lake Biwa, Japan). Aquat Microb Ecol 58:249–259

    Article  Google Scholar 

  • Proctor LM, Fuhrman JA (1991) Roles of viral infection in organic particulate flux. Mar Ecol Prog Ser 69:133–142

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Development Core Team, Vienna

    Google Scholar 

  • Robinson C (2008) Heterotrophic bacterial respiration. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, New York, pp 299–334

    Chapter  Google Scholar 

  • Salcher MM, Pernthaler J, Zeder M, Psenner R, Posch T (2008) Spatio-temporal niche separation of planktonic Betaproteobacteria in an oligo-mesotrophic lake. Environ Microbiol 10:2074–2086

    Article  CAS  PubMed  Google Scholar 

  • Salcher MM, Pernthaler J, Posch T (2011a) Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria ‘that rule the waves’ (LD12). ISME J 5:1242–1252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salcher MM, Pernthaler J, Frater N, Posch T (2011b) Vertical and longitudinal distribution patterns of different bacterioplankton populations in a canyon-shaped, deep prealpine lake. Limnol Oceanogr 56:2027–2039

    Article  CAS  Google Scholar 

  • Sanders RW, Caron DA, Berninger U-G (1992) Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Mar Ecol Prog Ser 86:1–14

    Article  Google Scholar 

  • Šimek K, Pernthaler J, Weinbauer MG, Horňák K, Dolan JR, Nedoma J, Mašín M, Amann R (2001) Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesotrophic reservoir. Appl Environ Microbiol 67:2723–2733

    Article  PubMed Central  PubMed  Google Scholar 

  • Šimek K, Horňák K, Jezbera J, Nedoma J, Vrba J, Straškrábová V, Macek N, Dolan JR, Hahn MW (2006) Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ Microbiol 8:1613–1624

    Article  PubMed  Google Scholar 

  • Šimek K, Weinbauer G, Horňák K, Jezbera J, Nedoma J, Dolan JR (2007) Grazer and virus-induced mortality of bacterioplankton accelerates development of Flectobacillus populations in a freshwater community. Environ Microbiol 9:789–800

    Article  PubMed  Google Scholar 

  • Søballe B, Pool KP (1999) Microbial ubiquinones: multiple roles in respiration, gene regulation and oxidative stress management. Microbiology 145:1817–1830

    Article  PubMed  Google Scholar 

  • Taira Y, Uchimiya M, Kudo I (2009) Simultaneous estimation of viral lysis and protozoan grazing on bacterial mortality using a modified virus-dilution method. Mar Ecol Prog Ser 379:23–32

    Article  Google Scholar 

  • Takasu H, Kunihiro T, Nakano S-I (2013) Estimation of carbon biomass and community structure of planktonic bacteria in Lake Biwa using respiratory quinone analysis. Limnology 14:247–256

    Article  Google Scholar 

  • Tamaoka J, Katayama-Fujimura H, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Microbiol 54:31–36

    CAS  Google Scholar 

  • Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45:1320–1328

    Article  Google Scholar 

  • Tijdens M, Van de Wall BD, Slovackova H, Hoogveld HL, Gons HJ (2008) Estimates of bacterial and phytoplankton mortality caused by viral lysis and microzooplankton grazing in a shallow eutrophic lake. Freshw Biol 53:1126–1141

    Article  Google Scholar 

  • Tremaine SC, Mills AL (1987) Tests of the critical assumptions of the dilution method for estimating bacterivory by microeucaryotes. Appl Environ Microbiol 53:2914–2921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weinbauer MG, Höfle MG (1998) Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl Environ Microbiol 64:431–438

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weinbauer MG, Christaki U, Nedoma J, Šimek K (2003) Comparing the effects of resource enrichment and grazing on viral production in a meso-eutrophic reservoir. Aquat Microb Ecol 31:137–144

    Article  Google Scholar 

  • Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han S-K (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155

    Article  Google Scholar 

  • Zwart G, van Hannen EJ, Kamst-van Agterveld MP, der Gucht KV, Lindström ES, Wichelen JV, Lauridsen T, Crump BC, Han S-K, Declerck S (2003) Rapid screening for freshwater bacterial groups by using reverse line blot hybridization. Appl Environ Microbiol 69:5875–5883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Masayuki Ushio for his invaluable comments as well as his encouragement throughout this study. We also thank Mr. Tadatoshi Koitabashi and Dr. Yukiko Goda for their assistance during field sampling, and thank other colleagues at the Center for Ecological Research, Kyoto University, for their valuable comments on this study. This study was partly supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI grant no. 23370010 and the Japan Science and Technology Strategic International Research Cooperative Program (Japan–China) on Science and Technology for Environmental Conservation and Construction of a Society with Less Environmental Burden “Fate of dissolved organic matter in lakes with special reference to loading and pollution” to S.N. and 21710081 and 23710010 to T.K. H.T. was supported by JSPS KAKENHI grant no. 11J00658.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Nakano.

Additional information

Handling Editor: Qinglong Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1. Regression analyses of dilution experiments to estimate growth and mortality raty.

Supplementary material 1 (EPS 3268 kb)

Supplementary material 2 (EPS 2335 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takasu, H., Kunihiro, T. & Nakano, Si. Protistan grazing and viral lysis losses of bacterial carbon production in a large mesotrophic lake (Lake Biwa). Limnology 15, 257–270 (2014). https://doi.org/10.1007/s10201-014-0431-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-014-0431-6

Keywords

Navigation