Skip to main content
Log in

Recycling plastics from automotive shredder residues: a review

  • SPECIAL FEATURE: REVIEW
  • Chemical Feedstock Recycling 10
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Automotive shredder residue (ASR) is an inevitable by-product of car recycling, i.e. removal of all liquids and hazardous or valuable components from the car and shredding of the hulk, followed by the recovery of steel, iron, and non-ferrous scrap. The European Union (EU) ELV Directive requires attaining higher recovery and recycling rates, resulting in a reduction of the amount of ASR going to landfill. The most plausible methods to achieve a considerable reduction of ASR are as follows: either recycling of separated materials and dismantled bulky parts, such as bumpers, dashboards, cushions, and front and rear windows, or else systematic sorting of the commingled and size-reduced materials, resulting from shredding. After a brief comparison of the actual situation in the EU, the USA, and Japan, the characteristics of actual ASR are reviewed, as well as some of the most prominent efforts made to separate and recycle specific fractions, such as polyolefins, ABS, or polyurethane. Attention is paid to some major players in the EU and to some of the pitfalls that besiege these ventures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Buekens AG (1977) Some observations on the recycling of plastics and rubber. Conserv Recycl 1:247–271

    Article  Google Scholar 

  2. Buekens AG (1984) Opportunities in the sorting of plastic waste, Plastic waste and scrap tires. In: Thomé-Kozmiensky KJ (Ed.) Recycling International, E. Freitag - Verlag für Umwelttechnik, pp 531–541

  3. Buekens AG, Patfoort G, Vandermeerschen A (1988) Les systèmes de collecte et de tri de déchets des matières plastiques et les problèmes à résoudre pour optimiser ces technologies. Colloque International sur le recyclage des déchets de matières plastiques, Paris

    Google Scholar 

  4. Buekens AG, Schoeters J (1998) Technical methods in plastics pyrolysis. Macromol Symp 135:63–81

    Article  Google Scholar 

  5. Buekens AG, Huang HT (1998) Catalytic plastics cracking for recovery of gasoline-range hydrocarbons from municipal plastic wastes. Resour Conserv Recycl 23:163–181

    Article  Google Scholar 

  6. OVAM (2008) Validatie van de recyclagepercentages voor afgedankte voertuigen bij shredder-en flottatiebedrijven. Mechelen, Belgium

    Google Scholar 

  7. British Metals Recycling Association (2013) BREF Style Report, Metal Fragmentising Operations, Industrial Emissions Directive. http://www.recyclemetals.org/files/downloads/BREF_Report_Jan_13.pdf

  8. Nijkerk AA, Dalmijn WL (1994) Handbook of recycling techniques. Nijkerk Consultancy

  9. Buekens AG (1978) Non Waste Technology in Belgium, First International Conference on Non-Waste Technology, organised by the Economic Council Europe, Paris

  10. The European Parliament and of the Council (2000) Directive 2000/53/EC of the European Parliament and of the Council of 18 September 2000 on end-of life vehicles. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2000L0053:20050701:EN:PDF

  11. Schneider J, Karigl B, Neubauer C, Tesar M, Oliva J, Read B (2010) End of life vehicles: Legal aspects, national practices and recommendations for future successful approach. European Parliament. http://ec.europa.eu/environment/waste/pdf/study/elv.pdf

  12. Jody BJ, Daniels EJ (2006) End-of life vehicle recycling: the state of the art of resource recovery from shredder residue. Argonne National Laboratory

  13. Waignein, Galloo (2014) Personal communication

  14. US EPA (2013) http://www.epa.gov/oswer/international/factsheets/200811_elv_directive.htm. Accessed 06 Nov 2013

  15. Christen D (2002) Elimination of shredder residue: the swiss approach. International Automobile Recycling Congress, Geneva

    Google Scholar 

  16. European Commission (2014) http://ec.europa.eu/environment/waste/elv_index.htm. Accessed 02 Jan 2014

  17. EUROPA (2011) Waste incineration http://europa.eu/legislation_summaries/environment/waste_management/l28072_en.htm. Accessed 06 Jan 2014

  18. European Commission, DG Environment (2007) Follow-up study on the implementation of Directive 1999/31/EC on the landfill of waste in EU-25 Final Report, Final Report-Finding of the Study. http://ec.europa.eu/environment/waste/pdf/study/cowi_report.pdf

  19. European Commission (2014) http://ec.europa.eu/enterprise/sectors/chemicals/reach/index_en.htm. Accessed 02 Jan 2014

  20. EUR-Lex (2014) http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32006R1907:EN:NOT. Accessed 02 Jan 2014

  21. EUR-LEX (2006) Directive 2006/12/EC of the European Parliament and of the Council of 5 April 2006 on waste. Official Journal of the European Union: 9-21 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:114:0009:0021:en:PDF

  22. Morselli L, Santini A, Passarini F, Vassura I (2010) Automotive shredder residue (ASR) characterization for a valuable management. Waste Manag 30:2228–2234

    Article  Google Scholar 

  23. Sander K, Schilling S, Zangl S, Lohse J (2002) Rule on compliance with Article 7.2 of Directive 2000/53/EC. http://ec.europa.eu/environment/waste/studies/elv/compliance_art7_2.pdf

  24. IEEP (2007) End of life vehicles (ELV) directive: an assessment of the current state of implementation by Member states. http://www.europarl.europa.eu/comparl/envi/pdf/externalexpertise/end_of_life_vehicles.pdf

  25. Vermeulen I, Caneghem JV, Block C, Baeyens J, Vandecasteele C (2011) Automotive shredder residue (ASR): reviewing its production from end-of-life vehicles (ELVs) and its recycling, energy or chemicals’ valorisation. J Hazard Mater 190:8–27

    Article  Google Scholar 

  26. Kenichi T (2008) Japan’s automotive recycling system: evaluation three years after implementation. Promoting 3Rs in developing countries—Lessons from the Japanese Experience

  27. Mat Saman MZ, Blount GN (2006) End of life vehicles recovery: process description, its impact and direction of research. Jurnal Mekanikal 21:40–52

    Google Scholar 

  28. Ishikawa R (2013) Ebara Co., personal communication

  29. Farnell guide to Korea RoHS (2008) Act for resource recycling of electrical and electronic equipment and vehicles—Korea RoHS, WEEE & ELV. http://uk.farnell.com/images/en/ede/pdf/rohs_korea_oct08.pdf

  30. RSJ Technical Consulting (2014) http://www.rsjtechnical.com/WhatisKoreaRoHS.htm. Accessed 02 Jan 2014

  31. US EPA (2014) Product Stewardship http://www.epa.gov/epawaste/conserve/tools/stewardship/index.htm. Accessed 2 Jan 2014

  32. Product Stewardship Institute (2014) Fluorescent Lighting http://productstewardship.us/displaycommon.cfm?an=1&subarticlenbr=271. Accessed 02 Jan 2014

  33. ELVS (2014) http://elvsolutions.org/. Accessed 04 Jan 2014

  34. Clean Car Campaign (2014) Partnership for Mercury Free Vehicles. http://www.cleancarcampaign.org/partnership.shtml. Accessed 04 Jan 2014

  35. USCAR (2014) Vehicle recycling partnership. http://www.uscar.org/guest/view_team.php?teams_id=16. Accessed 04 Jan 2014

  36. Material Data System (2014) http://www.mdsystem.com/imdsnt/startpage/index.jsp. Accessed 04 Jan 2014

  37. Colorado Department of Public Health and Environment (2006) Hazardous materials and waste management division, automotive salvage yard: waste management practices in Colorado

  38. Autodismantlers (2014) http://www.autodismantlers.net/. Accessed 04 Jan 2014

  39. EFR (2013) http://www.efr2.org/html/recycllocations.php. Accessed 12 Sep 2013

  40. Lanoir D, Trouvé EG, Delfosse L, Froelich D, Kassamaly A (1997) Physical and chemical characterization of automotive shredder residues. Waste Manage Res 15:267–276

    Article  Google Scholar 

  41. Ferrao P, Nazareth P, Amaral JE (2006) Strategies for meeting EU end-of-life vehicle reuse/recovery targets. J Ind Ecol 10:77–93

    Article  Google Scholar 

  42. Granata G, Moscardini E, Furlani G, Pagnanelli, Toro L (2009) Characterisation of automobile shredder residue. Chem Eng Trans 17:427–432

    Google Scholar 

  43. Harder MK, Forton OT (2007) A critical review of developments in the pyrolysis of automotive shredder residue. J Anal Appl Pyrol 79:387–394

    Article  Google Scholar 

  44. Mancini G, Tamma R, Viotti P (2010) Thermal process of fluff: preliminary tests on a full-scale treatment plant. Waste Manag 30:1670–1682

    Article  Google Scholar 

  45. Kim KH, Joung HT, Nam H, Seo YC, Hong JH, Yoo TW, Lim BS, Park JH (2004) Management status of end-of-life vehicles and characteristics of automobile shredder residues in Korea. Waste Manag 24:533–540

    Article  Google Scholar 

  46. Hjelmar O (2009) Treatment methods for waste to be landfilled. Nordic Council of Ministers

  47. Ignatenko O, Schaik AV, Reuter MA (2008) Recycling system flexibility: the fundamental solution to achieve high energy and material recovery quotas. J Clean Prod 16:432–449

    Article  Google Scholar 

  48. Lin KS, Chowdhury S, Wang ZP (2010) Catalytic gasification of automotive shredder residues with hydrogen generation. J Power Sources 195:6016–6023

    Article  Google Scholar 

  49. Marco ID, Caballero B, Torres A, Laresgoiti MF, Chomon MJ, Cabrero MA (2002) Recycling polymeric wastes by means of pyrolysis. J Chem Technol Biotechnol 77:817–824

    Article  Google Scholar 

  50. Robson S, Goodhead TC (2003) A process for incorporating automotive shredder residue into thermoplastic mouldings. J Mater Process Technol 139:327–331

    Article  Google Scholar 

  51. Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Phil Trans R Soc B 364:2115–2126

    Article  Google Scholar 

  52. Plastics Technology (2004) Can’t sell your new recycling Concept? http://www.ptonline.com/articles/cant-sell-your-new-recycling-concept. Accessed 2 Jan 2014

  53. Plastics News (2003) Salyp plant finds value in scrap residue http://www.plasticsnews.com/article/20031117/NEWS/311179998/salyp-plant-finds-value-in-scrap-residue Accessed 02 Jan 2014

  54. DG Environment, GHK in association with Bio Intelligence Service (2006) A study to examine the costs and benefits of the ELV directive –Final Report. Annexes 3

  55. Rainer Köhnlechner (2010) Neue Trennsyteme für WEEE-Kunststoffe. Kongress Zukunft Kunststoff-Verwertung 2010

  56. Bennett M, Edwards Leigh, Ball LG, Hilder R, Hall P, Morrish L, Morton R, Myles N (2009) Separation of mixed WEEE plastics-Final report. WRAP. http://www.wrap.org.uk/sites/files/wrap/Separation%20of%20mixed%20WEEE%20plastics%20-%20Final%20report.pdf

  57. Paul Scherrer Institute (2009) Management Note: Treatment of shredder residue with MWIPplus

  58. Caneghem JV, Block C, Vermeulen I, Brecht AV, Royen PV, Jaspers M, Wauters G, Vandecasteele C (2010) Mass balance for POPs in a real scale fluidized bed combustor co-incinerating automotive shredder residue. J Hazard Mater 181:827–835

    Article  Google Scholar 

  59. Börjeson L, Löfvenius G, Hjelt M, Johansson S, Marklund S (2000) Characterization of automotive shredder residues from two shredding facilities with different refining processes in Sweden. Waste Manage Res 18:358–366

    Article  Google Scholar 

  60. Caneghem JV, Vermeulen I, Block C, Brecht AV, Royen PV, Jaspers M, Wauters G, Vandecasteele C (2012) Destruction and formation of PCDD/Fs in a fluidised bed combustor co-incinerating automotive shredder residue with refuse derived fuel and wastewater treatment sludge. J Hazard Mater 207:152–158

    Article  Google Scholar 

  61. Hedman B, Burvall J, Nilsson C, Marklund S (2007) PCDD/F in source-sorted waste fractions and emissions from their co-combustion with reed canary grass. Waste Manag 27:1580–1592

    Article  Google Scholar 

  62. Cossu R, Fiore S, Lai T, Mancini G, Ruffino B, Viotti P, Zanetti MC (2012) Italian experience on automotive shredder residue: characterization and management. 3RD International Conference on Industrial and Hazardous Waste Management

  63. Ryan JV, Lutes CC (1993) Characterization of emissions from the simulated open burning of non-metallic automobile shredder residue. EPA-600/R-93-044, NTIS PB930172914

  64. Glass for Europe (2009) Recycling end-of-life vehicle glazing, an informational brochure from Glass for Europe

  65. Lassesson H (2008) Energy consumptions and CO2 emissions resulting from different handling strategies of glass from end-of-life vehicles. Chalmers University of Technology

  66. Zsofia U (2008) Best available technologies in end-of-life vehicles recycling. http://www.fisita.com/printfriendly/education/congress/sc08papers/f2008sc011.pdf

  67. Consortium for Automotive Recycling (CARE) (1999) Glass recycling: an automotive perspective

  68. Vieitez ER, Peter E, Villanueva A, Saveyn H (2011) End-of-waste criteria (EoW) for glass cullet: technical proposals. JRC-IPTS, European Commission, Europe

    Google Scholar 

  69. Drost U, Eisenlohr F, Kaiser B, Kaiser W, Stahlberg R (2004) Report on the operating trial with automotive shredder residue (ASR). 4th International Automobile Recycling Congress in Geneva, Switzerland. http://www.thermoselect.com/news/2004-03-10,%204th%20IARC,%20Geneva,%20THERMOSELECT2.pdf

  70. Agence de l’environnement et de la maîtrise de l’énergie (ADEME) (2007) Evaluation Technique et Economique du Procede de Gazeification de Dechets Twinrec de la Société EBARA RDC-Environnement

  71. Yonezawa K (2004) Optimization of resources and energy by linking among industrial aria. International Symposium on Sustainable Materials Engineering, Sendai

    Google Scholar 

  72. Competitive Analysis Centre, Inc., and Economic Associates, Inc. (1999) Automotive shredder residue, review of ASR: blast furnace concept with European interests. Prepared by competitive analysis Centre, Inc., and Economic Associates Inc., for the American Plastics Council (APC) and the Environment and Plastics Industry Council (EPIC) of CPIA

  73. Bhatti JA (2010) Current State and potential for increasing plastics recycling in the U.S.. Wtert, Columbia University

  74. Jalkanen H (2006) On the direct recycling of automotive shredder residue and electronic scrap in metallurgical industry. Acta Metallurgica Slovaca 12:160–166

    Google Scholar 

  75. Kubik K (2008) Theoretical thermodynamic analysis of car residues microwave pyrolysis products, using high-temperature steam for small scale electricity generation. Royal Institute of Technology

  76. Buekens AG (2013) Personal communication on confidential IWONL/IRSIA R&D reports on ASR testing

  77. Buekens AG, Froment G (1968) Fundamental aspects of the design of tubular cracking units, Pergamon Press. Proceedings of the fourth European Symposium of Chemical Reaction Engineering, Brussels: 287–329

  78. Viganò F, Consonni S, Grosso M, Rigamonti L (2010) Material and energy recovery from automotive shredded residues (ASR) via sequential gasification and combustion. Waste Manag 30:145–153

    Article  Google Scholar 

  79. Cho SJ, Jung HY, Seo YC, Kim WH (2010) Studies on gasification and melting characteristics of automobile shredder residue. Environ Eng Sci 27:577–586

    Article  Google Scholar 

  80. Roy C, Chaala A (2001) Vacuum pyrolysis of automobile shredder residues. Resour Conserv Recycl 32:1–27

    Article  Google Scholar 

  81. Buekens AG, Huang H (1998) Comparative evaluation of technique for controlling the formation and emission of chlorinated dioxins/furans in municipal waste incineration. J Hazard Mater 62:1–33

    Article  Google Scholar 

  82. Rausa R, Pollesel P (1997) Pyrolysis of automotive shredder residue (ASR) influence of temperature on the distribution of products. J Anal Appl Pyrol 40–41:383–401

    Article  Google Scholar 

  83. Marco I, Caballero BM, Cabrero MA, Laresgoiti MF, Torres A, Chomón MJ (2007) Recycling of automobile shredder residues by means of pyrolysis. J Anal Appl Pyrol 79:403–408

    Article  Google Scholar 

  84. Day M, Cooney JD, Touchette-Barrette C, Sheehan SE (1999) Pyrolysis of mixed plastics used in the electronics industry. J Anal Appl Pyrol 52:199–224

    Article  Google Scholar 

  85. Zolezzi M, Nicolella C, Ferrara S (2004) Conventional and pyrolysis of automobile shredder residue (ASR). Waste Manag 24:691–699

    Article  Google Scholar 

  86. Chiarioni A, Reverberi AP, El-Shaarawi AH, Dovì (2003) Modelling of an ASR countercurrent pyrolysis reactor with nonlinear kinetics. Appl Therm Eng 23:1847–1855

    Article  Google Scholar 

  87. Joung HT, Seo YC, Kim KH, Seo YC (2007) Effects of oxygen, catalyst and PVC on the formation of PCDDs, PCDFs and dioxin-like PCBs in the pyrolysis products of automobile residues. Chemosphere 65:1481–1489

    Article  Google Scholar 

  88. Joung HT, Seo YC, Kim KH (2007) Distribution of dioxins, furans, and dioxin-like PCBs in solid products generated by pyrolysis and melting of automobile shredder residue. Chemosphere 68:1636–1641

    Article  Google Scholar 

  89. Galvagno S, Fortuna F, Cornacchia G, Casu S, Coppola T, Sharma VK (2001) Pyrolysis process for treatment of automobile shredder residue: preliminary experimental results. Energy Convers Manag 42:573–586

    Article  Google Scholar 

  90. Donaj P, Blasiak W, Yang W, Forsgren C (2011) Conversion of microwave pyrolysed ASR’s char using high temperature agents. J Hazard Mater 185:472–481

    Article  Google Scholar 

  91. Donaj P, Yang W, Blasiak W, Forsgren C (2010) Recycling of automobile shredder residue with a microwave pyrolysis combined with high temperature steam gasification. J Hazard Mater 182:80–89

    Article  Google Scholar 

  92. Grause G, Buekens A, Sakata Y, Okuwaki A, Yoshioka T (2011) Feedstock recycling of waste polymeric material. J Mater Cycles Waste Manag 13:265–282

    Article  Google Scholar 

  93. Zevenhoven R, Saeed L (2003) Automotive shredder residue (ASR) and compact disc (CD) waste: options for recovery of material and energy. Helsinki University of Technology, Espoo (Finland)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the following persons, who helped improving this paper by their constructive comments or by providing additional information: Dr. C. Block (K.U.L.), Prof. C. Forsgren (Chalmers University; Stena Metall); Mr. R. Ishikawa (Ebara Co.), Dr. L. Jetten (DPI Value Centre), Mr. F. Nijkerk, Mr. V. Quidousse (Belgian Scrap Terminal), Dr. A. Sevenster (Vinyl Plus); Mrs. I. Vervloet (Federauto); Mr. L. Waignein (Galloo), and Prof. Dr. T.Yoshioka (Tohoku Univ., Japan), as well as the (unknown) reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfons Buekens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buekens, A., Zhou, X. Recycling plastics from automotive shredder residues: a review. J Mater Cycles Waste Manag 16, 398–414 (2014). https://doi.org/10.1007/s10163-014-0244-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-014-0244-z

Keywords

Navigation