Skip to main content
Log in

An Inverse Relationship Between Gray Matter Volume and Speech-in-Noise Performance in Tinnitus Patients with Normal Hearing Sensitivity

  • Original Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Speech-in-noise (SiN) recognition difficulties are often reported in patients with tinnitus. Although brain structural changes such as reduced gray matter (GM) volume in auditory and cognitive processing regions have been reported in the tinnitus population, it remains unclear how such changes influence speech understanding, such as SiN performance. In this study, pure-tone audiometry and Quick Speech-in-Noise test were conducted on individuals with tinnitus and normal hearing and hearing-matched controls. T1-weighted structural MRI images were obtained from all participants. After preprocessing, GM volumes were compared between tinnitus and control groups using whole-brain and region-of-interest analyses. Further, regression analyses were performed to examine the correlation between regional GM volume and SiN scores in each group. The results showed decreased GM volume in the right inferior frontal gyrus in the tinnitus group relative to the control group. In the tinnitus group, SiN performance showed a negative correlation with GM volume in the left cerebellum (Crus I/II) and the left superior temporal gyrus; no significant correlation between SiN performance and regional GM volume was found in the control group. Even with clinically defined normal hearing and comparable SiN performance relative to controls, tinnitus appears to change the association between SiN recognition and regional GM volume. This change may reflect compensatory mechanisms utilized by individuals with tinnitus who maintain behavioral performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Tyler RS, Baker LJ (1983) Difficulties experienced by tinnitus sufferers. J Speech Hear Disord 48(2):150–154. https://doi.org/10.1044/jshd.4802.150

    Article  CAS  PubMed  Google Scholar 

  2. Vielsmeier V, Kreuzer PM, Haubner F, Steffens T, Semmler PRO, Kleinjung T, Schlee W, Langguth B, Schecklmann M (2016) Speech comprehension difficulties in chronic tinnitus and its relation to hyperacusis. Front Aging Neurosci 8:293. https://doi.org/10.3389/fnagi.2016.00293

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ivansic D, Guntinas-Lichius O, Müller B, Volk GF, Schneider G, Dobel C (2017) Impairments of speech comprehension in patients with tinnitus-a review. Front Aging Neurosci 9:224. https://doi.org/10.3389/fnagi.2017.00224

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tai Y, Husain FT (2018) Right-ear advantage for speech-in-noise recognition in patients with nonlateralized tinnitus and normal hearing sensitivity. J Assoc Res Otolaryngol 19(2):211–221. https://doi.org/10.1007/s10162-017-0647-3

    Article  PubMed  Google Scholar 

  5. Tai Y, Husain FT (2020) Association between tinnitus pitch and consonant recognition in noise. Am J Audiol 29(4):916–929. https://doi.org/10.1044/2020_AJA-20-00050

    Article  PubMed  Google Scholar 

  6. Janse E (2012) A non-auditory measure of interference predicts distraction by competing speech in older adults. Aging Neuropsychol Cogn 19(6):741–758. https://doi.org/10.1080/13825585.2011.652590

    Article  Google Scholar 

  7. Peelle JE (2018) Listening effort: how the cognitive consequences of acoustic challenge are reflected in brain and behavior. Ear Hear 39(2):204–214. https://doi.org/10.1097/AUD.0000000000000494

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ashburner J, Friston KJ (2000) Voxel-based morphometry - the methods. Neuroimage 11(6):805–821. https://doi.org/10.1006/nimg.2000.0582

    Article  CAS  PubMed  Google Scholar 

  9. Ashburner J, Friston KJ (2001) Why voxel-based morphometry should be used. Neuroimage 14(6):1238–1243. https://doi.org/10.1006/nimg.2001.0961

    Article  CAS  PubMed  Google Scholar 

  10. Kanai R, Rees G (2011) The structural basis of inter-individual differences in human behaviour and cognition. Nat Rev Neurosci 12:231–242. https://doi.org/10.1038/nrn3000

    Article  CAS  PubMed  Google Scholar 

  11. Mühlau M, Rauschecker JP, Oestreicher E, Gaser C, Röttinger M, Wohlschläger AM, Simon F, Etgen T, Conrad B, Sander D (2006) Structural brain changes in tinnitus. Cereb Cortex 16(9):1283–1288. https://doi.org/10.1093/cercor/bhj070

    Article  PubMed  Google Scholar 

  12. Landgrebe M, Langguth B, Rosengarth K, Braun S, Koch A, Kleinjung T, May A, de Ridder D, Hajak G (2009) Structural brain changes in tinnitus: grey matter decrease in auditory and non-auditory brain areas. Neuroimage 46(1):213–218. https://doi.org/10.1016/j.neuroimage.2009.01.069

    Article  PubMed  Google Scholar 

  13. Allan TW, Besle J, Langers DRM, Davies J, Hall DA, Palmer AR, Adjamian P (2016) Neuroanatomical alterations in tinnitus assessed with magnetic resonance imaging. Front Aging Neurosci 8:221. https://doi.org/10.3389/fnagi.2016.00221

    Article  PubMed  PubMed Central  Google Scholar 

  14. Melcher JR, Knudson IM, Levine RA (2013) Subcallosal brain structure: correlation with hearing threshold at supra-clinical frequencies ( > 8 kHz ), but not with tinnitus. Hear Res 295:79–86. https://doi.org/10.1016/j.heares.2012.03.013

    Article  PubMed  Google Scholar 

  15. Boyen K, Langers DRM, de Kleine E, van Dijk P (2013) Gray matter in the brain: differences associated with tinnitus and hearing loss. Hear Res 295:67–78. https://doi.org/10.1016/j.heares.2012.02.010

    Article  PubMed  Google Scholar 

  16. Husain FT, Medina RE, Davis CW, Szymko-Bennett Y, Simonyan K, Pajor NM, Horwitz B (2011) Neuroanatomical changes due to hearing loss and chronic tinnitus: a combined VBM and DTI study. Brain Res 1369:74–88. https://doi.org/10.1016/j.brainres.2010.10.095

    Article  CAS  PubMed  Google Scholar 

  17. Koops EA, de Kleine E, van Dijk P (2020) Gray matter declines with age and hearing loss, but is partially maintained in tinnitus. Sci Rep 10:21801. https://doi.org/10.1038/s41598-020-78571-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vanneste S, Van De Heyning P, De Ridder D (2015) Tinnitus: a large VBM-EEG correlational study. PLoS ONE 10(3):e0115122. https://doi.org/10.1371/journal.pone.0115122

  19. Rudner M, Seeto M, Keidser G, Johnson B, Ronnberg J (2019) Poorer speech reception threshold in noise is associated with lower brain volume in auditory and cognitive processing regions. J Speech Lang Hear Res 62(4S):1117–1130. https://doi.org/10.1044/2018_JSLHR-H-ASCC7-18-0142

    Article  PubMed  Google Scholar 

  20. Wong PCM, Ettlinger M, Sheppard JP, Gunasekera GM, Dhar S (2010) Neuroanatomical characteristics and speech perception in noise in older adults. Ear Hear 31(4):471–479. https://doi.org/10.1097/AUD.0b013e3181d709c2

    Article  PubMed  PubMed Central  Google Scholar 

  21. Killion MC, Niquette PA, Gudmundsen GI, Revit LJ, Banerjee S (2004) Development of a quick speech-in-noise test for measuring signal-to-noise ratio loss in normal-hearing and hearing-impaired listeners. J Acoust Soc Am 116(4):2395–2405. https://doi.org/10.1121/1.1784440

    Article  PubMed  Google Scholar 

  22. American National Standards Institute (2003) Maximum permissible ambient noise levels for audiometric test rooms

  23. Tillman TW, Carhart R (1966) An expanded test for speech discrimination utilizing CNC monosyllabic words: Northwestern University Auditory Test No. 6. Northwestern University Auditory Research Lab, Evanston, IL

  24. American National Standards Institute (2010) Specification for audiometers

  25. Meikle MB, Henry JA, Griest SE, Stewart BJ, Abrams HB, McArdle R, Myers PJ, Newman CW, Sandridge S, Turk DC, Folmer RL, Frederick EJ, House JW, Jacobson GP, Kinney SE, Martin WH, Nagler SM, Reich GE, Searchfield G, Sweetow R, Vernon JA (2012) The tinnitus functional index: development of a new clinical measure for chronic, intrusive tinnitus. Ear Hear 33(2):153–176. https://doi.org/10.1097/AUD.0b013e31822f67c0

    Article  PubMed  Google Scholar 

  26. Henry JA, Griest S, Thielman E, Mcmillan G, Kaelin C, Carlson KF (2016) Tinnitus Functional Index: development, validation, outcomes research, and clinical application. Hear Res 334:58–64. https://doi.org/10.1016/j.heares.2015.06.004

    Article  PubMed  Google Scholar 

  27. Mühlau M, Rauschecker JP, Oestreicher E, Gaser C, Röttinger M, Wohlschläger AM, Simon F, Etgen T, Conrad B, Sander D (2006) Structural brain changes in tinnitus. Cereb Cortex 16(9):1283–1288. https://doi.org/10.1093/cercor/bhj070

    Article  PubMed  Google Scholar 

  28. Maldjian JA, Laurienti PJ, Burdette JH (2004) Precentral gyrus discrepancy in electronic versions of the Talairach atlas. Neuroimage 21(1):450–455. https://doi.org/10.1016/j.neuroimage.2003.09.032

    Article  PubMed  Google Scholar 

  29. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19(3):1233–1239. https://doi.org/10.1016/S1053-8119(03)00169-1

    Article  PubMed  Google Scholar 

  30. Schmidt SA, Zimmerman B, Bido Medina RO, Carpenter-Thompson JR, Husain FT (2018) Changes in gray and white matter in subgroups within the tinnitus population. Brain Res 1679:64–74. https://doi.org/10.1016/j.brainres.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  31. Harris KC, Dubno JR, Keren NI, Ahlstrom JB, Eckert MA (2009) Speech recognition in younger and older adults: a dependency on low-level auditory cortex. J Neurosci 29(19):6078–6087. https://doi.org/10.1523/JNEUROSCI.0412-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peelle JE, Wingfield A (2016) The neural consequences of age-related hearing loss. Trends Neurosci 39(7):486–497. https://doi.org/10.1016/j.tins.2016.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Newman LM, Trivedi MA, Bendlin BB, Ries ML, Johnson SC (2007) The relationship between gray matter morphometry and neuropsychological performance in a large sample of cognitively healthy adults. Brain Imaging Behav 1:3. https://doi.org/10.1007/s11682-007-9000-5

    Article  PubMed  PubMed Central  Google Scholar 

  34. Deschamps I, Hasson U, Tremblay P (2016) The structural correlates of statistical information processing during speech perception. PLoS One 11(2):e0149375. https://doi.org/10.1371/journal.pone.0149375

  35. Merabet LB, Pascual-Leone A (2010) Neural reorganization following sensory loss: the opportunity of change. Nat Rev Neurosci 11(1):44–52. https://doi.org/10.1038/nrn2758

    Article  CAS  PubMed  Google Scholar 

  36. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Changes in grey matter induced by training. Nature 427:311–312. https://doi.org/10.1038/427311a

    Article  CAS  PubMed  Google Scholar 

  37. Taubert M, Draganski B, Anwander A, Muller K, Horstmann A, Villringer A, Ragert P (2010) Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J Neurosci 30(35):11670–11677. https://doi.org/10.1523/JNEUROSCI.2567-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cardin V, Orfanidou E, Ronnberg J, Capek CM, Rudner M, Woll B (2013) Dissociating cognitive and sensory neural plasticity in human superior temporal cortex. Nat Commun 4:1473. https://doi.org/10.1038/ncomms2463

    Article  CAS  PubMed  Google Scholar 

  39. Lövdén M, Wenger E, Mårtensson J, Lindenberger U, Bäckman L (2013) Structural brain plasticity in adult learning and development. Neurosc Biobehav Rev 37(9):2296–2310. https://doi.org/10.1016/j.neubiorev.2013.02.014

    Article  Google Scholar 

  40. Hickok G, Poeppel D (2000) Towards a functional neuroanatomy of speech perception. Trends Cog Sci 4(4):131–138. https://doi.org/10.1016/S1364-6613(00)01463-7

    Article  CAS  Google Scholar 

  41. Kennedy-Higgins D, Devlin JT, Nuttall HE, Adank P (2020) The causal role of left and right superior temporal gyri in speech perception in noise: a transcranial magnetic stimulation study. J Cog Neurosci 32(6):1092–1103. https://doi.org/10.1162/jocn_a_01521

    Article  Google Scholar 

  42. Davis MH, Ford MA, Kherif F, Johnsrude IS (2011) Does semantic context benefit speech understanding through “top-down” processes? Evidence from time-resolved sparse fMRI. J Cog Neurosci 23(12):3914–3932. https://doi.org/10.1162/jocn_a_00084

    Article  Google Scholar 

  43. Evans S, McGettigan C, Agnew ZK, Rosen S, Scott SK (2016) Getting the cocktail party started: Masking effects in speech perception. J Cog Neurosci 28(3):483–500. https://doi.org/10.1162/jocn_a_00913

    Article  Google Scholar 

  44. Narain C, Scott SK, Wise RJS, Rosen S, Leff A, Iversen SD, Matthews PM (2003) Defining a left-lateralized response specific to intelligible speech using fMRI. Cereb Cortex 13(12):1362–1368. https://doi.org/10.1093/cercor/bhg083

    Article  CAS  PubMed  Google Scholar 

  45. Vander Ghinst M, Bourguignon Op, de Beeck M, Wens V, Marty B, Hassid S, Choufani G, Jousmäki V, Hari R, Van Bogaert P, Goldman S, De Tiège X (2016) Left superior temporal gyrus is coupled to attended speech in a cocktail-party auditory scene. J Neurosci 36(5):1596–1606. https://doi.org/10.1523/JNEUROSCI.1730-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wong PCM, Uppunda AK, Parrish TB, Dhar S (2008) Cortical mechanisms of speech perception in noise. J Speech Lang Hear Res 51(4):1026–1041. https://doi.org/10.1044/1092-4388(2008/075)

    Article  PubMed  Google Scholar 

  47. Bauer CA, Kurt W, Sybert LT, Brozoski TJ (2013) The cerebellum as a novel tinnitus generator. Hear Res 295:130–139. https://doi.org/10.1016/j.heares.2012.03.009

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mennink LM, van Dijk JMC, van Dijk P (2020) The cerebellar (para)flocculus: a review on its auditory function and a possible role in tinnitus. Hear Res 398:108081. https://doi.org/10.1016/j.heares.2020.108081

  49. Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SNF, Gerwig M, Habas C, Hagura N, Ivry RB, Marien P, Molinari M, Naito E, Nowak DA, Ben Taib NO, Pelisson D, Tesche CD, Tilikete C, Timmann D (2012) Consensus paper: Roles of the cerebellum in motor control-the diversity of ideas on cerebellar involvement in movement. Cerebellum 11:457–487. https://doi.org/10.1007/s12311-011-0331-9

    Article  PubMed  PubMed Central  Google Scholar 

  50. Guediche S, Holt LL, Laurent P, Lim SJ, Fiez JA (2015) Evidence for cerebellar contributions to adaptive plasticity in speech perception. Cereb Cortex 25(7):1867–1877. https://doi.org/10.1093/cercor/bht428

    Article  PubMed  Google Scholar 

  51. Mathiak K, Hertrich I, Grodd W, Ackermann H (2002) Cerebellum and speech perception: a functional magnetic resonance imaging study. J Cog Neurosci 14(6):902–912. https://doi.org/10.1162/089892902760191126

    Article  Google Scholar 

  52. Petacchi A, Laird AR, Fox PT, Bower JM (2005) Cerebellum and auditory function: an ALE meta-analysis of functional neuroimaging studies. Hum Brain Mapp 25(1):118–128. https://doi.org/10.1002/hbm.20137

    Article  PubMed  PubMed Central  Google Scholar 

  53. Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44(2):489–501. https://doi.org/10.1016/j.neuroimage.2008.08.039

    Article  PubMed  Google Scholar 

  54. Durisko C, Fiez JA (2010) Functional activation in the cerebellum during working memory and simple speech tasks. Cortex 46(7):896–906. https://doi.org/10.1016/j.cortex.2009.09.009

    Article  PubMed  Google Scholar 

  55. Yuan P, Raz N (2014) Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neurosci Biobehav Rev 42:180–192. https://doi.org/10.1016/j.neubiorev.2014.02.005

    Article  PubMed  Google Scholar 

  56. Bureš Z, Profant O, Svobodová V, Tóthová D, Vencovský V, Syka J (2019) Speech comprehension and its relation to other auditory parameters in elderly patients with tinnitus. Front Aging Neurosci 11:219. https://doi.org/10.3389/FNAGI.2019.00219

    Article  PubMed  PubMed Central  Google Scholar 

  57. Barnea G, Attias J, Gold S, Shahar A (1990) Tinnitus with normal hearing sensitivity: Extended high-frequency audiometry and auditory-nerve brain-stem-evoked responses. Audiol 29(1):36–45. https://doi.org/10.3109/00206099009081644

    Article  CAS  Google Scholar 

  58. Brännström KJ, Karlsson E, Waechter S, Kastberg T (2018) Extended high-frequency pure tone hearing thresholds and core executive functions. Int J Audiol 57(9):639–645. https://doi.org/10.1080/14992027.2018.1475755

    Article  PubMed  Google Scholar 

  59. Yoo HB, De Ridder D, Vanneste S (2016) The importance of aging in gray matter changes within tinnitus patients shown in cortical thickness, surface area and volume. Brain Topogr 29(6):885–896. https://doi.org/10.1007/s10548-016-0511-5

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Anthony Tsao for assisting with audiological data collection and Gibbeum Kim for assisting with data analysis.

Funding

The study was supported by the Department of Defense, award number W81XWH-15-2-0032 (PI: Husain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihsin Tai.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tai, Y., Shahsavarani, S., Khan, R.A. et al. An Inverse Relationship Between Gray Matter Volume and Speech-in-Noise Performance in Tinnitus Patients with Normal Hearing Sensitivity. JARO 24, 385–395 (2023). https://doi.org/10.1007/s10162-023-00895-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-023-00895-1

Keywords

Navigation