Skip to main content
Log in

Early Physiological and Cellular Indicators of Cisplatin-Induced Ototoxicity

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Cisplatin chemotherapy often causes permanent hearing loss, which leads to a multifaceted decrease in quality of life. Identification of early cisplatin-induced cochlear damage would greatly improve clinical diagnosis and provide potential drug targets to prevent cisplatin’s ototoxicity. With improved functional and immunocytochemical assays, a recent seminal discovery revealed that synaptic loss between inner hair cells and spiral ganglion neurons is a major form of early cochlear damage induced by noise exposure or aging. This breakthrough discovery prompted the current study to determine early functional, cellular, and molecular changes for cisplatin-induced hearing loss, in part to determine if synapse injury is caused by cisplatin exposure. Cisplatin was delivered in one to three treatment cycles to both male and female mice. After the cisplatin treatment of three cycles, threshold shift was observed across frequencies tested like previous studies. After the treatment of two cycles, beside loss of outer hair cells and an increase in high-frequency hearing thresholds, a significant latency delay of auditory brainstem response wave 1 was observed, including at a frequency region where there were no changes in hearing thresholds. The wave 1 latency delay was detected as early cisplatin-induced ototoxicity after only one cycle of treatment, in which no significant threshold shift was found. In the same mice, mitochondrial loss in the base of the cochlea and declining mitochondrial morphometric health were observed. Thus, we have identified early spiral ganglion-associated functional and cellular changes after cisplatin treatment that precede significant threshold shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abujamra AL, Escosteguy JR, Dall'Igna C, Manica D, Cigana LF, Coradini P, Brunetto A, Gregianin LJ (2013) The use of high-frequency audiometry increases the diagnosis of asymptomatic hearing loss in pediatric patients treated with cisplatin-based chemotherapy. Pediatr Blood Cancer 60:474–478

    Article  CAS  PubMed  Google Scholar 

  • Bao J, Wolpowitz D, Role LW, Talmage DA (2003) Back signaling by the Nrg-1 intracellular domain. J Cell Biol 161:1133–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao J, Lin H, Ouyang Y, Lei D, Osman A, Kim T-W, Mei L, Dai P, Ohlemiller KK, Ambron RT (2004) Activity-dependent transcription regulation of PSD-95 by neuregulin-1 and Eos. Nat Neurosci 7:1250–1258

    Article  CAS  PubMed  Google Scholar 

  • Bao J, Lei D, Du Y, Ohlemiller KK, Beaudet AL, Role LW (2005) Requirement of nicotinic acetylcholine receptor subunit β2 in the maintenance of spiral ganglion neurons during aging. J Neurosci 25:3041–3045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao J, Hungerford M, Luxmore R, Ding D, Qiu Z, Lei D, Yang A, Liang R, Ohlemiller KK (2013) Prophylactic and therapeutic functions of drug combinations against noise-induced hearing loss. Hear Res 304:33–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barry MA, Behnke CA, Eastman A (1990) Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem Pharmacol 40(10):2353–2362

  • Bielefeld EC (2013) Age-related hearing loss patterns in Fischer 344/NHsd rats with cisplatin-induced hearing loss. Hear Res 306:46–53

    Article  PubMed  Google Scholar 

  • Bielefeld EC, Markle A, DeBacker JR, Harrison RT (2018) Chronotolerance for cisplatin ototoxicity in the rat. Hear Res 370:16–21

    Article  CAS  PubMed  Google Scholar 

  • Bobylev I, Joshi AR, Barham M, Neiss WF, Lehmann HC (2018) Depletion of mitofusin-2 causes mitochondrial damage in cisplatin-induced neuropathy. Mol Neurobiol 55:1227–1235

    Article  CAS  PubMed  Google Scholar 

  • Böheim K, Bichler E (1985) Cisplatin-induced ototoxicity: audiometric findings and experimental cochlear pathology. Arch Otorhinolaryngol 242:1–6

    Article  PubMed  Google Scholar 

  • Breglio AM, Rusheen AE, Shide ED, Fernandez KA, Spielbauer KK, McLachlin KM, Hall MD, Amable L, Cunningham LL (2017) Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat Commun 8:1654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brennan-Jones CG, McMahen C, Van Dalen EC (2019) Cochrane corner: platinum-induced hearing loss after treatment for childhood cancer. Int J Audiol 58:181–184

    Article  PubMed  Google Scholar 

  • Canta A, Pozzi E, Carozzi V (2015) Mitochondrial dysfunction in chemotherapy-induced peripheral neuropathy (CIPN). Toxics 3:198–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardinaal RM, de Groot JC, Huizing EH, Veldman JE, Smoorenburg GF (2000) Dose-dependent effect of 8-day cisplatin administration upon the morphology of the albino Guinea pig cochlea. Hear Res 144:135–146

    Article  CAS  PubMed  Google Scholar 

  • Chiorazzi A, Semperboni S, Marmiroli P (2015) Current view in platinum drug mechanisms of peripheral neurotoxicity. Toxics 3:304–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Church MW, Blakley BW, Burgio DL, Gupta AK (2004) WR-2721 (Amifostine) ameliorates cisplatin-induced hearing loss but causes neurotoxicity in hamsters: dose-dependent effects. J Assoc Res Otolaryngol 5:227–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Clerici W, Hensley K, DiMartino D, Butterfield D (1996) Direct detection of ototoxicant-induced reactive oxygen species generation in cochlear explants. Hear Res 98:116–124

    Article  CAS  PubMed  Google Scholar 

  • Coughlin L, Morrison RS, Horner PJ, Inman DM (2015) Mitochondrial morphology differences and mitophagy deficit in murine glaucomatous optic nerve. Investig Ophthalmol Vis Sci 56(3):1437–1446

  • De Lauretis A, De Capua B, Barbieri MT, Bellussi L, Passàli D (1999) ABR evaluation of ototoxicity in cancer patients receiving cisplatin or carboplatin. Scand Audiol 28:139–143

    Article  PubMed  Google Scholar 

  • Dehne N, Lautermann J, Petrat F, Rauen U, de Groot H (2001) Cisplatin ototoxicity: involvement of iron and enhanced formation of superoxide anion radicals. Toxicol Appl Pharmacol 174:27–34

    Article  CAS  PubMed  Google Scholar 

  • Ding D, Jiang H, Wang P, Salvi R (2007) Cell death after co-administration of cisplatin and ethacrynic acid. Hear Res 226:129–139

    Article  CAS  PubMed  Google Scholar 

  • Einarsson EJ, Petersen H, Wiebe T, Fransson PA, Grenner J, Magnusson M, Moëll C (2010) Long term hearing degeneration after platinum-based chemotherapy in childhood. Int J Audiol 49:765–771

    Article  PubMed  Google Scholar 

  • Fausti SA, Frey RH, Henry JA, Olson DJ, Schaffer HI (1993) High-frequency testing techniques and instrumentation for early detection of ototoxicity. J Rehabil Res Dev 30:333–3341

    CAS  PubMed  Google Scholar 

  • Fernandez K, Wafa T, Fitzgerald TS, Cunningham LL (2019) An optimized, clinically relevant mouse model of cisplatin-induced ototoxicity. Hear Res 375:66–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis SP, Cunningham LL (2017) Non-autonomous cellular responses to ototoxic drug-induced stress and death. Front Cell Neurosci 11:252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilardini A, Avila RL, Oggioni N, Rodriguez-Menendez V, Bossi M, Canta A, Cavaletti G, Kirschner DA (2012) Myelin structure is unaltered in chemotherapy-induced peripheral neuropathy. Neurotoxicology 33:1–7

    Article  CAS  PubMed  Google Scholar 

  • Hansen SW, Helweg-Larsen S, Trojaborg W (1989) Long-term neurotoxicity in patients treated with cisplatin, vinblastine, and bleomycin for metastatic germ cell cancer. J Clin Oncol 7:1457–1461

    Article  CAS  PubMed  Google Scholar 

  • Harrison RT, DeBacker JR, Bielefeld EC (2015) A low-dose regimen of cisplatin before high-dose cisplatin potentiates ototoxicity. Laryngoscope 125:E78–E83

    Article  CAS  PubMed  Google Scholar 

  • Harrison RT, Seiler BM, Bielefeld EC (2016) Ototoxicity of 12 mg/kg cisplatin in the Fischer 344/NHsd rat using multiple dosing strategies. Anti-Cancer Drugs 27:780–786

    Article  CAS  PubMed  Google Scholar 

  • Hayes D, Cvitkovic E, Colbey R, Schreiner E, Helson L, Krakoff J (1977) High dose cis-platinum diammine dichloride. Cancer 39:1372–1381

    Article  CAS  PubMed  Google Scholar 

  • Hinojosa R, Riggs LC, Strauss M, Matz GJ (1995) Temporal bone histopathology of cisplatin ototoxicity. Am J Otol 16:731–740

    CAS  PubMed  Google Scholar 

  • Jessen KR, Mirsky R (2008) Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 56:1552–1565

    Article  PubMed  Google Scholar 

  • Kanat O, Ertas H, Caner B (2017) Platinum-induced neurotoxicity: a review of possible mechanisms. World J Clin Oncol 8:329–335

    Article  PubMed  PubMed Central  Google Scholar 

  • Karasawa T, Steyger PS (2015) An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol Lett 237:219–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight KRG, Kraemer DF, Neuwelt EA (2005) Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Oncol 23:8588–8596

    Article  PubMed  Google Scholar 

  • Komune S, Asakuma S, Snow JB Jr (1981) Pathophysiology of the ototoxicity of cis-diamminedichloroplatinum. Otolaryngol Head Neck Surg 89:275–282

    Article  CAS  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after "temporary" noise-induced hearing loss. J Neurosci. 29(45):14077–14085

  • Laurell G, Bagger-Sjöbäck D (1991) Degeneration of the organ of Corti following intravenous administration of cisplatin. Acta Otolaryngol 111:891–898

    Article  CAS  PubMed  Google Scholar 

  • Lautermann J, Crann SA, McLaren J, Schacht J (1997) Glutathione-dependent antioxidant systems in the mammalian inner ear: effects of aging, ototoxic drugs and noise. Hear Res 114:75–82

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Gravel M, Zhang R, Thibault P, Braun PE (2005a) Process outgrowth in oligodendrocytes is mediated by CNP, a novel microtubule assembly myelin protein. J Cell Biol 170:661–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y-C, Soong B-W, Liu Y-T, Lin K-P, Kao K-P, Wu Z-A (2005b) Median nerve motor conduction velocity is concordant with myelin protein zero gene mutation. J Neurol 252:151–155

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC, Kujawa SG (2017) Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms. Hear Res 349:138–147

  • Lee Y-J, Lee GJ, Yi SS, Heo S-H, Park C-R, Nam H-S, Cho M-K, Lee S-H (2016) Cisplatin and resveratrol induce apoptosis and autophagy following oxidative stress in malignant mesothelioma cells. Food Chem Toxicol 97:96–107

    Article  CAS  PubMed  Google Scholar 

  • Lobarinas E, Salvi R, Ding D (2013) Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas. Hear Res 302:113–120

    Article  CAS  PubMed  Google Scholar 

  • Lynch ED, Gu R, Pierce C, Kil J (2005) Combined oral delivery of ebselen and allopurinol reduces multiple cisplatin toxicities in rat breast and ovarian cancer models while enhancing anti-tumor activity. Anti-Cancer Drugs 16:569–579

    Article  CAS  PubMed  Google Scholar 

  • Madasu R, Ruckenstein M, Leake F, Steere E, Robbins K (1997) Ototoxic effects of supradose cisplatin with sodium thiosulfate neutralization in patients with head and neck cancer. Arch Otolaryngol Head Neck Surg 123:978–981

    Article  CAS  PubMed  Google Scholar 

  • McMillan GP, Konrad-Martin D, Dille MF (2012) Accuracy of distortion-product otoacoustic emissions-based ototoxicity monitoring using various primary frequency step-sizes. Int J Audiol 51:689–696

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjea D, Rybak LP (2011) Pharmacogenomics of cisplatin-induced ototoxicity. Pharmacogenomics 12(7):1039–1050

  • Muniak MA, Rivas A, Montey KL, May BJ, Francis HW, Ryugo DK (2013) 3D model of frequency representation in the cochlear nucleus of the CBA/J mouse. J Comp Neurol 521:1510–1532

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohlemiller KK, Wright JS, Heidbreder AF (2000a) Vulnerability to noise-induced hearing loss in ‘middle-aged’and young adult mice: a dose–response approach in CBA, C57BL, and BALB inbred strains. Hear Res 149:239–247

    Article  CAS  PubMed  Google Scholar 

  • Ohlemiller KK, McFadden SL, Ding D-L, Lear PM, Ho Y-S (2000b) Targeted mutation of the gene for cellular glutathione peroxidase (Gpx1) increases noise-induced hearing loss in mice. J Assoc Res Otolaryngol 1:243–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podratz JL, Knight AM, Ta LE, Staff NP, Gass JM, Genelin K, Schlattau A, Lathroum L, Windebank AJ (2011) Cisplatin induced mitochondrial DNA damage in dorsal root ganglion neurons. Neurobiol Dis 41:661–668

    Article  CAS  PubMed  Google Scholar 

  • Podratz JL, Lee H, Knorr P, Koehler S, Forsythe S, Lambrecht K, Arias S, Schmidt K, Steinhoff G, Yudintsev G (2017) Cisplatin induces mitochondrial deficits in Drosophila larval segmental nerve. Neurobiol Dis 97:60–69

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. In: R Foundation for Statistical Computing, Vienna, Austria URL https://www.R-project.org/

  • Ravi R, Somani SM, Rybak LP (1995) Mechanism of cisplatin ototoxicity: antioxidant system. Pharmacol Toxicol 76:386–394

    Article  CAS  PubMed  Google Scholar 

  • Reavis KM, Phillips DS, Fausti SA, Gordon JS, Helt WJ, Wilmington D, Bratt GW, Konrad-Martin D (2008) Factors affecting sensitivity of distortion-product otoacoustic emissions to ototoxic hearing loss. Ear Hear 29:875–893

    Article  PubMed  Google Scholar 

  • Reddel R, Kefford R, Grant J, Coates A, Fox T, Tattersall M (1982) Ototoxicity in patients receiving cisplatin: importance of dose and method of drug administration. Cancer Treat Rep 66:19–23

    CAS  PubMed  Google Scholar 

  • Roy S, Ryals MM, Van den Bruele AB, Fitzgerald TS, Cunningham LL (2013) Sound preconditioning therapy inhibits ototoxic hearing loss in mice. J Clin Invest 123:4945–4949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rybak LP, Whitworth CA, Mukherjea D, Ramkumar V (2007) Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res 226:157–167

    Article  CAS  PubMed  Google Scholar 

  • Rybak LP, Mukherjea D, Ramkumar V (2019) Mechanisms of cisplatin-induced ototoxicity and prevention. Seminars in hearing, Vol. 40. Thieme Medical Publishers. Pp. 197-204

  • Sheth S, Mukherjea D, Rybak LP, Ramkumar V (2017) Mechanisms of cisplatin-induced ototoxicity and otoprotection. Front Cell Neurosci 11:338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stavroulaki P, Apostolopoulos N, Segas J, Tsakanikos M, Adamopoulos G (2001) Evoked otoacoustic emissions—an approach for monitoring cisplatin induced ototoxicity in children. Int J Pediatr Otorhinolaryngol 59:47–57

    Article  CAS  PubMed  Google Scholar 

  • Taioli F, Cabrini I, Cavallaro T, Acler M, Fabrizi GM (2011) Inherited demyelinating neuropathies with micromutations of peripheral myelin protein 22 gene. Brain 134:608–617

    Article  PubMed  Google Scholar 

  • Tang J, Qian Y, Li H, Kopecky BJ, Ding D, Ou HC, DeCook R, Chen X, Sun Z, Kobel M (2015) Canertinib induces ototoxicity in three preclinical models. Hear Res 328:59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taveggia C (2016) Schwann cells–axon interaction in myelination. Curr Opin Neurobiol 39:24–29

    Article  CAS  PubMed  Google Scholar 

  • van Ruijven MWM, de Groot JCMJ, Klis SFL, Smoorenburg GF (2005) The cochlear targets of cisplatin: An electrophysiological and morphological time-sequence study. Hear Res 205(1-2):241–248

  • van Zeijl G, Conijn E, Rodenburg M, Tange R, Brocaar M (1984) Analysis of hearing loss due to cis-diamminedichloroplatinum-II. Arch Oto-Rhino-Laryngol 239:255–262

    Article  Google Scholar 

  • Velasco R, Bruna J, Briani C, Argyriou AA, Cavaletti G, Alberti P, Frigeni B, Cacciavillani M, Lonardi S, Cortinovis D (2014) Early predictors of oxaliplatin-induced cumulative neuropathy in colorectal cancer patients. J Neurol Neurosurg Psychiatry 85:392–398

    Article  PubMed  Google Scholar 

  • Waissbluth S, Peleva E, Daniel SJ (2017) Platinum-induced ototoxicity: a review of prevailing ototoxicity criteria. Eur Arch Otorhinolaryngol 274:1187–1196

    Article  PubMed  Google Scholar 

  • Wan G, Corfas G (2017) Transient auditory nerve demyelination as a new mechanism for hidden hearing loss. Nat Commun 8:14487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Ma Y, Liu Z, Geng Q, Chen Z, Zhang Y (2017) Alterations of myelin morphology and oligodendrocyte development in early stage of Alzheimer’s disease mouse model. Neurosci Lett 642:102–106

Download references

Acknowledgments

The authors would like to thank Dr. Mincheol Kang for his help. The project was supported by a grant to J.B. from the National Institute on Deafness and Other Communication Disorders (R41DC017108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Bao.

Ethics declarations

Conflict of Interest Disclosure Statement

J.B. is one of the co-founders of Gateway Biotechnology Inc. and has disclosed potential interests fully to Northeast Ohio Medical University. Other authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Bielefeld, E.C., Mellott, J.G. et al. Early Physiological and Cellular Indicators of Cisplatin-Induced Ototoxicity. JARO 22, 107–126 (2021). https://doi.org/10.1007/s10162-020-00782-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-020-00782-z

Keywords

Navigation