Skip to main content
Log in

Full-Field Thickness Distribution of Human Tympanic Membrane Obtained with Optical Coherence Tomography

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

The full-field thickness distribution, three-dimensional surface model and general morphological data of six human tympanic membranes are presented. Cross-sectional images were taken perpendicular through the membranes using a high-resolution optical coherence tomography setup. Five normal membranes and one membrane containing a pathological site are included in this study. The thickness varies strongly across each membrane, and a great deal of inter-specimen variability can be seen in the measurement results, though all membranes show similar features in their respective relative thickness distributions. Mean thickness values across the pars tensa ranged between 79 and 97 μm; all membranes were thinnest in the central region between umbo and annular ring (50–70 μm), and thickness increased steeply over a small distance to approximately 100–120 μm when moving from the central region either towards the peripheral rim of the pars tensa or towards the manubrium. Furthermore, a local thickening was noticed in the antero–inferior quadrant of the membranes, and a strong linear correlation was observed between inferior–posterior length and mean thickness of the membrane. These features were combined into a single three-dimensional model to form an averaged representation of the human tympanic membrane. 3D reconstruction of the pathological tympanic membrane shows a structural atrophy with retraction pocket in the inferior portion of the pars tensa. The change of form at the pathological site of the membrane corresponds well with the decreased thickness values that can be measured there.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  • Abel EW, Lord RM (2001) A finite-element model for evaluation of middle ear mechanics. In: Eng Med Biol Soc. Proceedings of the 23rd Annual International Conference of the IEEE., pp 2110–2112

    Google Scholar 

  • Aernouts J, Aerts JR, Dirckx JJ (2012) Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements. Hear Res 290:45–54

    Article  PubMed  Google Scholar 

  • Bibas AG, Podoleanu AGH, Cucu RG, Dobre GM, Odell E, Boxer AB et al (2004) Optical coherence tomography in otolaryngology: original results and review of the literature. Proc SPIE 5312:190–195

    Article  Google Scholar 

  • Bradu A, Podoleanu AGH, Rosen RB (2005) High-speed en-face optical coherence tomography system for the retina. Journal of Optoelectronics and Advanced Materials 7(6):2913–2918

    Google Scholar 

  • Buytaert JA, Salih WH, Dierick M, Jacobs P, Dirckx JJ (2011) Realistic 3D computer model of the gerbil middle ear, featuring accurate morphology of bone and soft tissue structures. J Assoc Res Otolaryngol 12:681–696

    Article  PubMed  Google Scholar 

  • Buytaert JA, Van der Jeught S, Ars B, Podoleanu AGH, Dirckx JJJ (2013) Preliminary human tympanic membrane thickness data from optical coherence tomography. Opt Meas Tech Struct Syst Shaker Publishing 75–84. ISBN 978-90-423-0419-2

  • Cheng T, Dai C, Gan RZ (2007) Viscoelastic properties of human tympanic membrane. Ann Biomed Eng 35:305–314

    Article  PubMed  Google Scholar 

  • Daphalapurkar NP, Dai C, Gan RZ, Lu H (2009) Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation. J Mech Behav Biomed Mater 2:82–92

    Article  PubMed  Google Scholar 

  • Decraemer WF, Funnell WRJ (2008) Anatomical and mechanical properties of the tympanic membrane. In: Chronic otitis media. Pathogenesis-oriented therapeutic management. Kugler, The Hague

    Google Scholar 

  • Dirckx JJ, Kuypers LC, Decraemer WF (2005) Refractive index of tissue measured with confocal microscopy. J Biomed Optics 10(4):044014–044014

    Article  Google Scholar 

  • Djalilian HR, Ridgway J, Tam M, Sepehr A, Chen Z, Wong BJ (2008) Imaging the human tympanic membrane using optical coherence tomography in vivo. Otol Neurotol 29:10911094

    Google Scholar 

  • Fox CH, Johnson FB, Whiting J, Roller PP (1985) Formaldehyde fixation. J Histochem Cytochem 33(8):845–853

    Article  PubMed  CAS  Google Scholar 

  • Funnell WRJ, Laszlo CA (1982) A critical review of experimental observations on ear-drum structure and function. J Otorhinolaryngol Relat Spec 44:181–205

    Article  CAS  Google Scholar 

  • Gaihede M, Liao D, Gregersen H (2007) In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modeling of middle ear mechanical function in normal young and aged ears. Phys Med Biol 52:803–814

    Article  PubMed  Google Scholar 

  • Gan RZ, Feng B, Sun Q (2004) Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng 32:847–859

    Article  PubMed  Google Scholar 

  • Gan RZ, Dai C, Wang X, Nakmali D, Wood MW (2010) A totally implantable hearing system—design and function characterization in 3D computational model and temporal bones. Hearing Research 263(1):138–144

    Article  PubMed  Google Scholar 

  • Hildebrand T, Rüegsegger P (2003) A new method for the model‐independent assessment of thickness in three‐dimensional images. J Microsc 185:67–75

    Article  Google Scholar 

  • Hopwood D (1967) Some aspects of fixation with glutaraldehyde. J Anatomy 101(1):83–92

    CAS  Google Scholar 

  • Huang G, Daphalapurkar NP, Gan RZ, Lu H (2008) A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation. J Biomech Eng 130:014501

    Article  PubMed  Google Scholar 

  • Jonmarker S, Valdman A, Lindberg A, Hellström M, Egevad L (2006) Tissue shrinkage after fixation with formalin injection of prostatectomy specimens. Virchows Archiv An Int J Pathol 449(3):297–301

    Article  Google Scholar 

  • Just T, Lankenau E, Hüttmann G, Pau HW (2009) Optical coherence tomography of the oval window niche. J Laryngol Otol 123:603–608

    Article  PubMed  CAS  Google Scholar 

  • Koike T, Wada H, Kobayashi T (2002) Modeling of the human middle ear using the finite-element method. J Acoust Soc Am 111:1306–1317

    Article  PubMed  Google Scholar 

  • Kojo Y (1954) Morphological studies of the human tympanic membrane. J Otolaryngol Jpn 57:115–126

    Google Scholar 

  • Kuypers LC, Decraemer WF, Dirckx JJ (2006) Thickness distribution of fresh and preserved human eardrums measured with confocal microscopy. Otol Neurotol 27:256–264

    Article  PubMed  Google Scholar 

  • Le CD, Huynh QL (2008) Mathematical models of human middle ear in chronic otitis media. Proc Inf Technol Appl Biomed:426–429

  • Lee CF, Chen PR, Lee WJ, Chen JH, Liu TC (2006) Computer aided three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis. Biomed Eng Appl Basis Commun 18:214

    Article  Google Scholar 

  • Lim DJ (1970) Human tympanic membrane: an ultrastructural observation. Acta Otolaryngol 70:176–186

    Article  PubMed  CAS  Google Scholar 

  • Lin TY, Yu JF, Chen CK (2011) Magnetic resonance imaging of the in vivo human tympanic membrane. Chang Gung Med J 34:166–71

    PubMed  Google Scholar 

  • Luo H, Dai C, Gan RZ, Lu H (2009) Measurement of young's modulus of human tympanic membrane at high strain rates. J Biomech Eng 131:064501

    Article  PubMed  Google Scholar 

  • Metscher BD (2009) Micro-CT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. Biomed Centr Physiol 9:11

    Google Scholar 

  • Nguyen CT, Jung W, Kim J, Chaney EJ, Novak M, Stewart CN, Boppart SA (2012) Noninvasive in vivo optical detection of biofilm in the human middle ear. Proc Nat Acad Sci 109(24):9529–9534

    Article  PubMed  CAS  Google Scholar 

  • Pitris C, Saunders KT, Fujimoto JG, Brezinski ME (2001) High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study. Arch Otolaryngol Head Neck Surg 127:637642

    Article  Google Scholar 

  • Prendergast PJ, Ferris P, Rice HJ, Blayney AW (1999) Vibro-acoustic modelling of the outer and middle ear using the finite-element method. Audiol Neurootol 4:185–191

    Article  PubMed  CAS  Google Scholar 

  • Ruah CB, Schachern PA, Zelterman D, Paparella MM, Yoon TH (1991) Age-related morphologic changes in the human tympanic membrane. A light and electron microscopic study. Arch Otolaryngol Head Neck Surg 117:627–634

    Article  PubMed  CAS  Google Scholar 

  • Schmidt SH, Hellström S (1991) Tympanic-membrane structure—new views. J Otorhinolaryngol Relat Spec 53:32–36

    Article  CAS  Google Scholar 

  • Song YL, Lee CF (2012) Computer-aided modeling of sound transmission of the human middle ear and its otological applications using finite element analysis. Tzu Chi Med J 24:178–180

    Article  Google Scholar 

  • Sun Q, Gan RZ, Chang KH, Dormer KJ (2002) Computer-integrated finite element modeling of human middle ear. Biomechanics Modeling Mechanobiol 1(2):109–122

    Article  CAS  Google Scholar 

  • Trifanov I, Caldas P, Neagu L, Romero R, Berendt MO, Salcedo JAR, Ribeiro ABL (2011) Combined neodymium–ytterbium-doped ASE fiber-optic source for optical coherence tomography applications. Photonics Technology Letters IEEE 23(1):21–23

    Article  Google Scholar 

  • Uebo K, Kodama A, Oka Y, Ishii T (1988) Thickness of normal human tympanic membrane. Ear Res Jpn 19:70–73

    Google Scholar 

  • Van der Jeught S, Buytaert J, Bradu A, Podoleanu AGH, Dirckx JJJ (2013) Real-time correction of geometric distortion artifacts in large-volume optical coherence tomography. Meas Sci Technol 24. doi:10.1088/0957-0233/24/5/057001

  • Van der Jeught S, Buytaert J, Bradu A, Podoleanu AGH, Dirckx JJJ (2012) Large-volume optical coherence tomography with real-time correction of geometric distortion artifacts. Recent Advances in Topography. Publ. Nova Science Publishers, New York. http://arxiv.org/abs/1212.1595

  • Volandri G, Di Puccio F, Forte P, Carmignani C (2011) Biomechanics of the tympanic membrane. J Biomech 44:1219–1236

    Article  PubMed  CAS  Google Scholar 

  • Wada H, Metoki T, Kobayashi T (1992) Analysis of dynamic behavior of human middle ear using a finite‐element method. J Acoust Soc Am 92:3157–3168

    Article  PubMed  CAS  Google Scholar 

  • Wen YH, Hsu LP, Chen PR, Lee CF (2006) Design optimization of cartilage myringoplasty using finite element analysis. Tzu Chi Med J 18:370–377

    Google Scholar 

  • Zhao F, Koike T, Wang J, Sienz H, Meredith R (2009) Finite element analysis of the middle ear transfer functions and related pathologies. Med Eng Phys 31:907–916

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. M. von Unge for his much appreciated help in the diagnosis of the pathological membrane TMP. S. Van der Jeught and J. Buytaert acknowledge the support of the Research Foundation–Flanders (FWO), J. Aerts acknowledges the support of the Flemish Agency for Innovation by Science and Technology (IWT) and A. Bradu and A. Podoleanu acknowledge the support of the ERC grant COGATIMABIO, 249889.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Van der Jeught.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van der Jeught, S., Dirckx, J.J.J., Aerts, J.R.M. et al. Full-Field Thickness Distribution of Human Tympanic Membrane Obtained with Optical Coherence Tomography. JARO 14, 483–494 (2013). https://doi.org/10.1007/s10162-013-0394-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-013-0394-z

Keywords

Navigation