Skip to main content

Advertisement

Log in

Thioredoxin reductase as a novel biomarker for the diagnosis and efficacy prediction of gastrointestinal malignancy: a large-scale, retrospective study

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Our aim was to investigate the rationality and accuracy of plasma TrxR activity as an efficient tool in the early diagnosis of gastrointestinal malignancy, and whether TrxR can be used to evaluate the therapeutic efficacy of gastrointestinal malignancy.

Methods

We enrolled a total of 5091 cases, including 3736 cases in gastrointestinal malignancy, 964 in benign diseases, and 391 cases in healthy controls. We also performed receiver operating characteristic (ROC) analysis to evaluate diagnostic efficiency of TrxR. Finally, we detected pre- and post-treatment level of TrxR and common tumor markers.

Results

The plasma TrxR level in patients with gastrointestinal malignancy [8.4 (6.9, 9.7) U/mL] was higher than that in patients with benign disease [5.8 (4.6, 6.9) U/mL] and healthy control [3.5 (1.4, 5.4) U/mL]. Plasma TrxR showed a significant diagnostic advantage with an AUC of 0.897, compared with conventional tumor markers. In addition, the combination of TrxR and conventional tumor markers can further improve the diagnostic efficiency. We derived the optimal cut-off value of plasma TrxR as a diagnostic marker of gastrointestinal malignancy according to Youden index of 6.15 U/mL. After measuring the change trend of TrxR activity and conventional tumor markers before and after anti-tumor treatments, we found that their change trend was generally consistent, and the plasma TrxR activity was significantly decreased in patients treated with chemotherapy, targeted therapy and immunotherapy.

Conclusions

Our findings recommend that plasma TrxR activity could be monitored as an efficient tool for the early diagnosis of gastrointestinal malignancy and as a feasible tool to evaluate the therapeutic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The data sets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Peery AF, Dellon ES, Lund J et al (2012) Burden of gastrointestinal disease in the United States: 2012 update. Gastroenterology. https://doi.org/10.1053/j.gastro.2012.08.002

  2. Siegel RL, Miller KD, Fuchs HE et al (2022) Cancer statistics, 2022. CA Cancer J Clin. https://doi.org/10.3322/caac.21708

  3. Ludmir EB, Palta M, Willett CG et al (2017) Total neoadjuvant therapy for rectal cancer: an emerging option. Cancer 123(9):1497–1506. https://doi.org/10.1002/cncr.30600

    Article  PubMed  Google Scholar 

  4. Charalampakis N, Economopoulou P, Kotsantis I et al (2018) Medical management of gastric cancer: a 2017 update. Cancer Med 7(1):123–133. https://doi.org/10.1002/cam4.1274

    Article  PubMed  Google Scholar 

  5. Llovet JM, Montal R, Sia D et al (2018) Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol 15(10):599–616. https://doi.org/10.1038/s41571-018-0073-4

    Article  PubMed  Google Scholar 

  6. Zhu Y, Zhu X, Wei X et al (2021) HER2-targeted therapies in gastric cancer. Biochim Biophys Acta Rev Cancer 1876(1):188549. https://doi.org/10.1016/j.bbcan.2021.188549

  7. Smyth EC, Nilsson M, Grabsch HI et al (2020) Gastric cancer. Lancet (Lond Engl) 396(10251):635–648. https://doi.org/10.1016/S0140-6736(20)31288-5

    Article  CAS  Google Scholar 

  8. Ladabaum U, Dominitz JA, Kahi C et al (2020) Strategies for colorectal cancer screening. Gastroenterology 158(2):418–432. https://doi.org/10.1053/j.gastro.2019.06.043

    Article  CAS  PubMed  Google Scholar 

  9. Heiss JA, Brenner H (2017) Epigenome-wide discovery and evaluation of leukocyte DNA methylation markers for the detection of colorectal cancer in a screening setting. Clin Epigenetics 9:24. https://doi.org/10.1186/s13148-017-0322-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He C-Z, Zhang K-H, Li Q et al (2013) Combined use of AFP, CEA, CA125 and CAl9-9 improves the sensitivity for the diagnosis of gastric cancer. BMC Gastroenterol 13:87. https://doi.org/10.1186/1471-230X-13-87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang W, Chen X-L, Zhao S-Y et al (2016) Prognostic significance of preoperative serum CA125, CA19-9 and CEA in gastric carcinoma. Oncotarget 7(23):35423–35436. https://doi.org/10.18632/oncotarget.8770

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nikolaou S, Qiu S, Fiorentino F et al (2018) Systematic review of blood diagnostic markers in colorectal cancer. Tech Coloproctol 22(7):481–498. https://doi.org/10.1007/s10151-018-1820-3

    Article  PubMed  PubMed Central  Google Scholar 

  13. Young GP, Pedersen SK, Mansfield S et al (2016) A cross-sectional study comparing a blood test for methylated BCAT1 and IKZF1 tumor-derived DNA with CEA for detection of recurrent colorectal cancer. Cancer Med 5(10):2763–2772. https://doi.org/10.1002/cam4.868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ruibal Morell A (1992) CEA serum levels in non-neoplastic disease. Int J Biol Markers 7(3):160–166. https://doi.org/10.1177/172460089200700307

    Article  CAS  PubMed  Google Scholar 

  15. Hao C, Zhang G, Zhang L (2019) Serum CEA levels in 49 different types of cancer and noncancer diseases. Prog Mol Biol Transl Sci 162:213–227. https://doi.org/10.1016/bs.pmbts.2018.12.011

    Article  CAS  PubMed  Google Scholar 

  16. Hammarström S (1999) The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9(2):67–81. https://doi.org/10.1006/scbi.1998.0119

    Article  PubMed  Google Scholar 

  17. Abelev GI, Eraiser TL (1999) Cellular aspects of alpha-fetoprotein reexpression in tumors. Semin Cancer Biol 9(2):95–107. https://doi.org/10.1006/scbi.1998.0084

    Article  CAS  PubMed  Google Scholar 

  18. Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776. https://doi.org/10.1146/annurev.biochem.77.061606.161055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee S, Kim SM, Lee RT (2013) Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal 18(10):1165–1207. https://doi.org/10.1089/ars.2011.4322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hanschmann E-M, Godoy JR, Berndt C et al (2013) Thioredoxins, glutaredoxins, and peroxiredoxins–molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 19(13):1539–1605. https://doi.org/10.1089/ars.2012.4599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hornsveld M, Dansen TB (2016) The Hallmarks of cancer from a redox perspective. Antioxid Redox Signal 25(6):300–325. https://doi.org/10.1089/ars.2015.6580

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, Li X, Han X et al (2017) Targeting the thioredoxin system for cancer therapy. Trends Pharmacol Sci 38(9):794–808. https://doi.org/10.1016/j.tips.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  23. Benhar M, Shytaj IL, Stamler JS et al (2016) Dual targeting of the thioredoxin and glutathione systems in cancer and HIV. J Clin Investig 126(5):1630–1639. https://doi.org/10.1172/JCI85339

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schumacker PT (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10(3):175–176. https://doi.org/10.1016/j.ccr.2006.08.015

    Article  CAS  PubMed  Google Scholar 

  25. Fu B, Meng W, Zeng X et al (2017) TXNRD1 Is an unfavorable prognostic factor for patients with hepatocellular carcinoma. Biomed Res Int 2017:4698167. https://doi.org/10.1155/2017/4698167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakamura H, Bai J, Nishinaka Y et al (2000) Expression of thioredoxin and glutaredoxin, redox-regulating proteins, in pancreatic cancer. Cancer Detect Prev 24(1):53–60

    CAS  PubMed  Google Scholar 

  27. Zhu Y, Hu Y, Zhu X et al (2022) Plasma thioredoxin reductase: a potential diagnostic biomarker for gastric cancer. Carcinogenesis. https://doi.org/10.1093/carcin/bgac052

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yagublu V, Arthur JR, Babayeva SN et al (2011) Expression of selenium-containing proteins in human colon carcinoma tissue. Anticancer Res 31(9):2693–2698

    CAS  PubMed  Google Scholar 

  29. Locker GY, Hamilton S, Harris J et al (2006) ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 24(33):5313–5327. https://doi.org/10.1200/JCO.2006.08.2644

    Article  CAS  PubMed  Google Scholar 

  30. Arnér ES, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267(20):6102–6109. https://doi.org/10.1046/j.1432-1327.2000.01701.x

    Article  PubMed  Google Scholar 

  31. Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036

    Article  CAS  PubMed  Google Scholar 

  32. Zhang X, Selvaraju K, Saei AA et al (2019) Repurposing of auranofin: thioredoxin reductase remains a primary target of the drug. Biochimie 162:46–54. https://doi.org/10.1016/j.biochi.2019.03.015

    Article  CAS  PubMed  Google Scholar 

  33. Rigobello MP, Folda A, Baldoin MC et al (2005) Effect of auranofin on the mitochondrial generation of hydrogen peroxide. Role of thioredoxin reductase. Free Radic Res 39(7):687–695. https://doi.org/10.1080/10715760500135391

  34. Prast-Nielsen S, Cebula M, Pader I et al (2010) Noble metal targeting of thioredoxin reductase–covalent complexes with thioredoxin and thioredoxin-related protein of 14 kDa triggered by cisplatin. Free Radic Biol Med 49(11):1765–1778. https://doi.org/10.1016/j.freeradbiomed.2010.09.008

    Article  CAS  PubMed  Google Scholar 

  35. Gencheva R, Cheng Q, Arnér ESJ (2022) Thioredoxin reductase selenoproteins from different organisms as potential drug targets for treatment of human diseases. Free Radical Biol Med 190:320–338. https://doi.org/10.1016/j.freeradbiomed.2022.07.020

    Article  CAS  Google Scholar 

  36. Yokomizo A, Ono M, Nanri H et al (1995) Cellular levels of thioredoxin associated with drug sensitivity to cisplatin, mitomycin C, doxorubicin, and etoposide. Can Res 55(19):4293–4296

    CAS  Google Scholar 

  37. Zhao R, Ren S, Li C et al (2022) Biomarkers for pancreatic cancer based on tissue and serum metabolomics analysis in a multicenter study. Cancer Med. https://doi.org/10.1002/cam4.5296

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jiao H-B, Wang W, Guo M-N et al (2022) Evaluation of high-risk factors and the diagnostic value of alpha-fetoprotein in the stratification of primary liver cancer. World J Clin Cases 10(26):9264–9275. https://doi.org/10.12998/wjcc.v10.i26.9264

    Article  PubMed  PubMed Central  Google Scholar 

  39. Holmgren A, Lu J (2010) Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun 396(1):120–124. https://doi.org/10.1016/j.bbrc.2010.03.083

    Article  CAS  PubMed  Google Scholar 

  40. Zhang J, Zhang B, Li X et al (2019) Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: an update. Med Res Rev. https://doi.org/10.1002/med.21507

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li C, Peng Y, Mao B et al (2015) Thioredoxin reductase: a novel, independent prognostic marker in patients with hepatocellular carcinoma. Oncotarget 6(19):17792–17804. https://doi.org/10.18632/oncotarget.3785

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ye S, Chen X, Yao Y et al (2019) Thioredoxin reductase as a novel and efficient plasma biomarker for the detection of non-small cell lung cancer: a large-scale. Multicent Study Sci Rep 9(1):2652. https://doi.org/10.1038/s41598-018-38153-7

    Article  CAS  Google Scholar 

  43. Peng W, Zhou Z, Zhong Y et al (2020) Author correction: plasma activity of thioredoxin reductase as a novel biomarker in gastric cancer. Sci Rep 10(1):17254. https://doi.org/10.1038/s41598-020-70071-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bhatia M, McGrath KL, Di Trapani G et al (2016) The thioredoxin system in breast cancer cell invasion and migration. Redox Biol 8:68–78. https://doi.org/10.1016/j.redox.2015.12.004

    Article  CAS  PubMed  Google Scholar 

  45. Söderberg A, Sahaf B, Rosén A (2000) Thioredoxin reductase, a redox-active selenoprotein, is secreted by normal and neoplastic cells: presence in human plasma. Can Res 60(8):2281–2289

    Google Scholar 

  46. Zhang W, Zheng X, Wang X (2015) Oxidative stress measured by thioredoxin reductase level as potential biomarker for prostate cancer. Am J Cancer Res 5(9):2788–2798

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by National Natural Science Foundation of China (No. 81802667), Natural Science Foundation of Jiangsu Province (BK20180133) and Nanjing Outstanding Youth Fund (No. JQX20009).

Author information

Authors and Affiliations

Authors

Contributions

WZ, CT and YH conceived the study and reviewed the manuscript. WZ, WN performed bioinformatics analysis. YH, YZ, JS, and XW collected clinical information. YZ and YH performed statistical analysis. YH and WN wrote the manuscript. All authors contributed to the conception of the study and the preparation and approval of the paper.

Corresponding authors

Correspondence to Cuiju Tang or Wenwen Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

This study is approved by the Ethics Committee of Nanjing First Hospital. Informed consent was obtained from all patients.

Consent for publication

Not applicable for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 8244 kb)

Supplementary file2 (DOCX 74 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Zhu, Y., Nie, W. et al. Thioredoxin reductase as a novel biomarker for the diagnosis and efficacy prediction of gastrointestinal malignancy: a large-scale, retrospective study. Int J Clin Oncol 28, 880–892 (2023). https://doi.org/10.1007/s10147-023-02350-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-023-02350-w

Keywords

Navigation