Skip to main content

Advertisement

Log in

Pre-treatment ratio of periprostatic to subcutaneous fat thickness on MRI is an independent survival predictor in hormone-naïve men with advanced prostate cancer

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Epidemiological studies have shown an association between obesity and prostate cancer (PCa) aggressiveness. However, little is known about periprostatic fat (PPF) and its relationship with overall fat deposition in PCa. PPF is thought to contribute to PCa growth and migration via secreted factors and induction of chronic inflammation. We investigated if pre-treatment PPF thickness correlates with overall survival (OS).

Methods

We reviewed 85 hormone-naïve men with advanced PCa who had received androgen deprivation therapy (ADT). PPF thickness was measured by magnetic resonance imaging (MRI) and compared with subcutaneous fat (SCF) thickness as an internal control. Visceral fat (VF) area measured by computed tomography served as an additional control. We evaluated the relationship between laboratory data, pathology results, and obesity parameters and OS.

Results

Median follow-up was 50.6 months. Thirty-six patients died during follow-up. Univariate analysis revealed that nadir PSA titer, Gleason score, N stage, M stage, extent of disease by bone scan grade, hemoglobin, lactate dehydrogenase, alkaline phosphatase, and PPF/SCF ratio were associated with OS. Multivariate analysis revealed that nadir PSA titer, N stage, and PPF/SCF ratio were independent prognostic factors for survival. The 5-year OS in the patients with higher PPF/SCF ratio (≥ 1) and lower PPF/SCF ratio (< 1) was 49.5% and 66.5%, respectively (P = 0.039).

Conclusions

Pre-treatment ratio of PPF–to-SCF thickness on MRI is an independent predictor of survival in hormone-naïve men with advanced PCa. This could be useful for predicting which patients are more likely to develop castration-resistant PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cooperberg MR, Hinotsu S, Namiki M et al (2009) Risk assessment among prostate cancer patients receiving primary androgen deprivation therapy. J Clin Oncol 27(26):4306–4313. https://doi.org/10.1200/JCO.2008.21.5228

    Article  PubMed  PubMed Central  Google Scholar 

  2. James ND, Sydes MR, Clarke NW et al (2016) Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 387(10024):1163–1177. https://doi.org/10.1016/S0140-6736(15)01037-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vale CL, Burdett S, Rydzewska LHM et al (2016) Addition of docetaxel or bisphosphonates to standard of care in men with localised or metastatic, hormone-sensitive prostate cancer: a systematic review and meta-analyses of aggregate data. Lancet Oncol 17(2):243–256. https://doi.org/10.1016/S1470-2045(15)00489-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kyriakopoulos CE, Chen YH, Carducci MA et al (2018) Chemohormonal therapy in metastatic hormone-sensitive prostate cancer: long-term survival analysis of the randomized phase III E3805 CHAARTED trial. J Clin Oncol 36(11):1080–1087. https://doi.org/10.1200/JCO.2017.75.3657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Voogt HJ, Suciu S, Sylvester R et al (1989) Multivariate analysis of prognostic factors in patients with advanced prostatic cancer: results from 2 European organization for research on treatment of cancer trials. J Urol 141(4):883–888

    Article  PubMed  Google Scholar 

  6. Ishikawa S, Soloway MS, Van der Zwaag R et al (1989) Prognostic factors in survival free of progression after androgen deprivation therapy for treatment of prostate cancer. J Urol 141(5):1139–1142

    Article  CAS  PubMed  Google Scholar 

  7. Sasaki T, Onishi T, Hoshina A (2012) Cutoff value of time to prostate-specific antigen nadir is inversely correlated with disease progression in advanced prostate cancer. Endocr Relat Cancer 19(5):725–730. https://doi.org/10.1530/ERC-12-0133

    Article  CAS  PubMed  Google Scholar 

  8. Sasaki T, Onishi T, Hoshina A (2011) Nadir PSA level and time to PSA nadir following primary androgen deprivation therapy are the early survival predictors for prostate cancer patients with bone metastasis. Prostate Cancer Prostatic Dis 14(3):248–252. https://doi.org/10.1038/pcan.2011.14

    Article  CAS  PubMed  Google Scholar 

  9. Zhong S, Yan X, Wu Y et al (2016) Body mass index and mortality in prostate cancer patients: a dose-response meta-analysis. Prostate Cancer Prostatic Dis 19(2):122–131. https://doi.org/10.1038/pcan.2015.64

    Article  CAS  PubMed  Google Scholar 

  10. Finley DS, Calvert VS, Inokuchi J et al (2009) Periprostatic adipose tissue as a modulator of prostate cancer aggressiveness. J Urol 182(4):1621–1627. https://doi.org/10.1016/j.juro.2009.06.015

    Article  CAS  PubMed  Google Scholar 

  11. van Roermund JG, Hinnen KA, Tolman CJ et al (2011) Periprostatic fat correlates with tumour aggressiveness in prostate cancer patients. BJU Int 107(11):1775–1779. https://doi.org/10.1111/j.1464-410X.2010.09811.x

    Article  PubMed  Google Scholar 

  12. Salji M, Hendry J, Patel A et al (2018) Peri-prostatic fat volume measurement as a predictive tool for castration resistance in advanced prostate cancer. Eur Urol Focus 4(6):858–866. https://doi.org/10.1016/j.euf.2017.01.019

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sacca PA, Creydt VP, Choi H et al (2012) Human periprostatic adipose tissue: its influence on prostate cancer cells. Cell Physiol Biochem 30(1):113–122. https://doi.org/10.1159/000339051

    Article  CAS  PubMed  Google Scholar 

  14. Ribeiro RJ, Monteiro CP, Cunha VF et al (2012) Tumor cell-educated periprostatic adipose tissue acquires an aggressive cancer-promoting secretory profile. Cell Physiol Biochem 29(1–2):233–240. https://doi.org/10.1159/000337604

    Article  CAS  PubMed  Google Scholar 

  15. Ribeiro R, Monteiro C, Cunha V et al (2012) Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro. J Exp Clin Cancer Res 31:32. https://doi.org/10.1186/1756-9966-31-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ribeiro R, Monteiro C, Catalan V et al (2012) Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue. BMC Med 10:108. https://doi.org/10.1186/1741-7015-10-108

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang Q, Sun LJ, Qi J et al (2014) Periprostatic adiposity measured on magnetic resonance imaging correlates with prostate cancer aggressiveness. Urol J 11(4):1793–1799

    PubMed  Google Scholar 

  18. Japanese Urologial Association (2001) In: Murai M (ed) General rule for clinical and pathological studies on prostate cancer, 3rd edn. Tokyo, Kanehara Syuppan, pp 84–87

    Google Scholar 

  19. Bhindi B, Trottier G, Elharram M et al (2012) Measurement of peri-prostatic fat thickness using transrectal ultrasonography (TRUS): a new risk factor for prostate cancer. BJU Int 110(7):980–986. https://doi.org/10.1111/j.1464-410X.2012.10957.x

    Article  PubMed  Google Scholar 

  20. Woo S, Cho JY, Kim SY et al (2015) Periprostatic fat thickness on MRI: correlation with Gleason score in prostate cancer. AJR Am J Roentgenol 204(1):W43–47. https://doi.org/10.2214/AJR.14.12689

    Article  PubMed  Google Scholar 

  21. Tan WP, Lin C, Chen M et al (2016) Periprostatic fat: a risk factor for prostate cancer? Urology 98:107–112. https://doi.org/10.1016/j.urology.2016.07.042

    Article  PubMed  Google Scholar 

  22. Cao Y, Cao M, Chen Y et al (2017) The combination of prostate imaging reporting and data system version 2 (PI-RADS v2) and periprostatic fat thickness on multi-parametric MRI to predict the presence of prostate cancer. Oncotarget 8(27):44040–44049. https://doi.org/10.18632/oncotarget.17182

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dahran N, Szewczyk-Bieda M, Wei C et al (2017) Normalized periprostatic fat MRI measurements can predict prostate cancer aggressiveness in men undergoing radical prostatectomy for clinically localised disease. Sci Rep 7(1):4630. https://doi.org/10.1038/s41598-017-04951-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mangiola S, Stuchbery R, McCoy PJ et al (2019) Androgen deprivation therapy promotes an obesity-like microenvironment in periprostatic fat. Endocr Connect. https://doi.org/10.1530/EC-19-0029

    Article  PubMed  PubMed Central  Google Scholar 

  25. Toren P, Venkateswaran V (2014) Periprostatic adipose tissue and prostate cancer progression: new insights into the tumor microenvironment. Clin Genitourin Cancer 12(1):21–26. https://doi.org/10.1016/j.clgc.2013.07.013

    Article  PubMed  Google Scholar 

  26. Laurent V, Guerard A, Mazerolles C et al (2016) Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nat Commun 7:10230. https://doi.org/10.1038/ncomms10230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Venkatasubramanian PN, Brendler CB, Plunkett BA et al (2014) Periprostatic adipose tissue from obese prostate cancer patients promotes tumor and endothelial cell proliferation: a functional and MR imaging pilot study. Prostate 74(3):326–335

    Article  PubMed  Google Scholar 

  28. Gucalp A, Iyengar NM, Zhou XK et al (2017) Periprostatic adipose inflammation is associated with high-grade prostate cancer. Prostate Cancer Prostatic Dis 20(4):418–423. https://doi.org/10.1038/pcan.2017.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dahran N, Szewczyk-Bieda M, Vinnicombe S et al (2018) Periprostatic fat adipokines expression correlated with prostate cancer aggressiveness in men undergoing radical prostatectomy for clinically localised disease. BJU Int. https://doi.org/10.1111/bju.14469

    Article  Google Scholar 

  30. Mangiola S, Stuchbery R, Macintyre G et al (2018) Periprostatic fat tissue transcriptome reveals a signature diagnostic for high-risk prostate cancer. Endocr Relat Cancer 25(5):569–581. https://doi.org/10.1530/ERC-18-0058

    Article  CAS  PubMed  Google Scholar 

  31. Halabi S, Ou SS, Vogelzang NJ et al (2007) Inverse correlation between body mass index and clinical outcomes in men with advanced castration-recurrent prostate cancer. Cancer 110(7):1478–1484. https://doi.org/10.1002/cncr.22932

    Article  PubMed  Google Scholar 

  32. Lee JS, Lee HS, Ha JS et al (2018) Subcutaneous fat distribution is a prognostic biomarker for men with castration resistant prostate cancer. J Urol 200(1):114–120. https://doi.org/10.1016/j.juro.2018.01.069

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Toru Ogura (Department of Clinical Research Support Center, Mie University) for his assistance in statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Sasaki.

Ethics declarations

Conflict of interest

The authors have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, T., Sugino, Y., Kato, M. et al. Pre-treatment ratio of periprostatic to subcutaneous fat thickness on MRI is an independent survival predictor in hormone-naïve men with advanced prostate cancer. Int J Clin Oncol 25, 370–376 (2020). https://doi.org/10.1007/s10147-019-01559-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-019-01559-y

Keywords

Navigation