Skip to main content

Advertisement

Log in

Prognostic significance of neutrophil/lymphocyte ratio (NLR) and correlation with PET–CT metabolic parameters in small cell lung cancer (SCLC)

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to detect the prognostic significance of neutrophil/lymphocyte ratio (NLR) in SCLC and to evaluate the relation with 18F-FDG PET–CT metabolic parameters (PET–CT MPs).

Methods

Demographic parameters, laboratory values including NLR and other clinical variables were analyzed in 112 patients with small cell lung cancer (SCLC) and 54 of these patients had results of metabolic parameters detected with 18 FDG PET–CT [including SUVmax, SUVmean, metabolic tumor volume (MTV), whole body MTV (WBMTV), TLG (total lesion glycolysis), whole body TLG (WBTLG)] were evaluated for survival analyses.

Results

Mean and median overall survival (OS) and progression-free survival (PFS) were found to be significantly longer in cases with NLR < 4 compared with NLR > 4 in totally. Also stage, performance status, response to first-line therapy, LDH, and lymphocyte count were found to be prognostic for OS and PFS. MTV, WBMTV and WBTLG were found to be prognostic for both OS and PFS, while SUVmax found to be significant for OS. Patients with NLR ≥ 4, MTV ≥ 60.1, WBMTV ≥ 120 and WBTLG ≥ 1000 points had lower OS and PFS. A moderate positive correlation was found between NLR and SUVmean (r: 0.36), SUVmax (r: 0.34), TLG (r: 0.39), MTV (r: 0.51), WBMTV (r: 0.40), and WBTLG (r: 0.46).

Conclusion

There is relationship between PET–CT metabolic parameters and NLR in SCLC. Highest correlation was found with NLR and MTV, WBMTV, and WBTLG, and evaluation of NLR together with these parameters predicts survival times and tumor biology more clearly in SCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E365–E368

    Article  CAS  Google Scholar 

  2. Govindan R, Page N, Morgensztern D et al (2006) Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol 24(28):4539–4544

    Article  PubMed  Google Scholar 

  3. Stupp R, Monnerat C, Turrisi AT et al (2004) Small cell lung cancer: state of the art and future perspectives. Lung cancer 45(1):105–117

    Article  PubMed  Google Scholar 

  4. Yip D, Harper PG (2000) Predictive and prognostic factors in small cell lung cancer: current status. Lung cancer 28(3):173–185

    Article  CAS  PubMed  Google Scholar 

  5. Micke P, Faldum A, Metz T et al (2002) Staging small cell lung cancer: Veterans Administration Lung Study Group versus International Association for the Study of Lung Cancer—what limits limited disease? Lung Cancer 37(3):271–276

    Article  PubMed  Google Scholar 

  6. Edge S, Byrd DR, Compton CC et al (2010) American Joint Committee on Cancer (AJCC). In: Cancer staging handbook, 7th edn. Springer, New York, pp 299–323

    Google Scholar 

  7. Kalemkerian GP, Schneider BJ (2017) Advances in small cell lung cancer. Hematol Oncol Clin North Am 31(1):143–156

    Article  PubMed  Google Scholar 

  8. Jett JR, Schild SE, Kesler KA et all (2013) Treatment of small cell lung cancer: Diagnosis and management of lung cancer: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 143(5):e400S–e419S

    Article  CAS  PubMed  Google Scholar 

  9. van Loon J, De Ruysscher D, Wanders R et al (2010) Selective nodal irradiation on basis of 18FDG-PET scans in limited-disease small-cell lung cancer: a prospective study. Int J Radiat Oncol Biol Phys 77(2):329–336

    Article  PubMed  Google Scholar 

  10. Sasaki R, Komaki R, Macapinlac H et al (2005) [18F] fluorodeoxyglucose uptake by positron emission tomography predicts outcome of non–small-cell lung cancer. J Clin Oncol 23(6):1136–1143

    Article  CAS  PubMed  Google Scholar 

  11. Davies A, Tan C, Paschalides C et al (2007) FDG-PET maximum standardised uptake value is associated with variation in survival: analysis of 498 lung cancer patients. Lung Cancer 55(1):75–78

    Article  PubMed  Google Scholar 

  12. Guo H, Zhu H, Xi Y et all (2007) Diagnostic and prognostic value of 18F-FDG PET/CT for patients with suspected recurrence from squamous cell carcinoma of the esophagus. J Nucl Med 48(8):1251–1258

    Article  PubMed  Google Scholar 

  13. Lund AA, Vilstrup MH, Jochumsen KM et al (2017) Prognostic Evaluation of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in endometrial cancer: a retrospective study. Int J Gynecol Cancer 27(8):1675–1684

    Article  PubMed  Google Scholar 

  14. Xie P, Yue JB, Fu Z et al (2009) Prognostic value of 18F-FDG PET-CT before and after radiotherapy for locally advanced nasopharyngeal carcinoma. Ann Oncol 21(5):1078–1082

    Article  PubMed  Google Scholar 

  15. Zhang H, Wroblewski K, Liao S et al (2013) Prognostic value of metabolic tumor burden from 18F-FDG PET in surgical patients with non–small-cell lung cancer. Acad Radiol 20(1):32–40

    Article  PubMed  Google Scholar 

  16. Tamandl D, Ta J, Schmid R et al (2016) Prognostic value of volumetric PET parameters in unresectable and metastatic esophageal cancer. Eur J Radiol 85(3):540–545

    Article  PubMed  Google Scholar 

  17. Satoh Y, Onishi H, Nambu A et al (2014) Volume-based parameters measured by using FDG PET/CT in patients with stage I NSCLC treated with stereotactic body radiation therapy: prognostic value. Radiology 270(1):275–281

    Article  PubMed  Google Scholar 

  18. Kim MH, Lee JS, Mok JH et al (2014) Metabolic burden measured by 18f-fluorodeoxyglucose positron emission tomography/computed tomography is a prognostic factor in patients with small cell lung cancer. Cancer Res Treat 46(2):165–171

    Article  PubMed Central  PubMed  Google Scholar 

  19. Salavati A, Duan F, Snyder BS et al (2017) Optimal FDG PET/CT volumetric parameters for risk stratification in patients with locally advanced non-small cell lung cancer: results from the ACRIN 6668/RTOG 0235 trial. Eur J Nucl Med Mol Imaging 44(12):1969–1983

    Article  PubMed Central  PubMed  Google Scholar 

  20. Liu J, Dong M, Sun X et al (2016) Prognostic value of 18F-FDG PET/CT in surgical non-small cell lung cancer: a meta-analysis. PLoS One 11(1):e0146195

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Mantovani A, Allavena P, Sica A et al (2008) Cancer-related inflammation. Nature 454(7203):436–444

    Article  CAS  PubMed  Google Scholar 

  22. Boissier R, Campagna J, Branger N et al (2017) The prognostic value of the neutrophil-lymphocyte ratio in renal oncology: a review. Urol Oncol 35(4):135–141

    Article  PubMed  Google Scholar 

  23. Park SB, Choi JY, Moon SH et al (2014) Prognostic value of volumetric metabolic parameters measured by [18 F] Fluorodeoxyglucose-positron emission tomography/computed tomography in patients with small cell lung cancer. Cancer Imaging 14:2

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kwon SH, Hyun SH, Yoon JK et al (2016) The highest metabolic activity on FDG PET is associated with overall survival in limited-stage small-cell lung cancer. Medicine 95(5):e2772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Käsmann L, Bolm L, Schild SE et al (2017) Neutrophil-to-lymphocyte ratio predicts outcome in limited disease small-cell lung cancer. Lung 195(2):217–224

    Article  PubMed  CAS  Google Scholar 

  26. Wang X, Teng F, Kong L et al (2016) Pretreatment neutrophil-to-lymphocyte ratio as a survival predictor for small-cell lung cancer. Onco Targets Ther 9:5761–5770

    Article  PubMed Central  PubMed  Google Scholar 

  27. Templeton AJ, McNamara MG, Šeruga B et al (2014) Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst 106(6):dju124. https://doi.org/10.1093/jnci/dju124

    Article  CAS  PubMed  Google Scholar 

  28. Kang MH, Go SI, Song HN et al (2014) The prognostic impact of the neutrophil-to-lymphocyte ratio in patients with small-cell lung cancer. Br J Cancer 111(3):452–460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Suzuki R, Lin SH, Wei X et al (2018) Prognostic significance of pretreatment total lymphocyte count and neutrophil-to-lymphocyte ratio in extensive-stage small-cell lung cancer. Radiother Oncol 126(3):499–505

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  31. Powell DR, Huttenlocher A (2016) Neutrophils in the tumor microenvironment. Trends Immunol 37(1):41–52

    Article  CAS  PubMed  Google Scholar 

  32. Zhao W, Wang P, Jia H et al (2017) Lymphocyte count or percentage: which can better predict the prognosis of advanced cancer patients following palliative care? BMC Cancer 17(1):514

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Fridlender ZG, Albelda SM (2012) Tumor-associated neutrophils: friend or foe? Carcinogenesis 33(5):949–955

    Article  CAS  PubMed  Google Scholar 

  34. Zhou SL, Zhou ZJ, Hu ZQ et al (2016) Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology 150(7):1646–1658

    Article  CAS  PubMed  Google Scholar 

  35. Shen M, Hu P, Donskov F et al (2014) Tumor-associated neutrophils as a new prognostic factor in cancer: a systematic review and meta-analysis. PloS One 9(6):e98259

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Gumus F, Solak I, Eryilmaz MA (2018) The effects of smoking on neutrophil/lymphocyte, platelet//lymphocyte ratios. Bratisl Lek Listy 119(2):116–119

    CAS  PubMed  Google Scholar 

  37. Sheikhbahaei S, Mena E, Pattanayak P et al (2017) Molecular imaging and precision medicine: PET/computed tomography and therapy response assessment in oncology. PET Clin 12:105–118

    Article  PubMed  Google Scholar 

  38. Lee YJ, Cho A, Cho BC et al (2009) High tumor metabolic activity as measured by fluorodeoxyglucose positron emission tomography is associated with poor prognosis in limited and extensive stage small-cell lung cancer. Clin Cancer Res 15(7):2426–2432

    Article  CAS  PubMed  Google Scholar 

  39. Zhu D, Ma T, Niu Z et al (2011) Prognostic significance of metabolic parameters measured by 18 F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with small cell lung cancer. Lung Cancer 73(3):332–337

    Article  PubMed  Google Scholar 

  40. Oh JR, Seo JH, Chong A et al (2012) Whole-body metabolic tumour volume of 18F-FDG PET-CT improves the prediction of prognosis in small cell lung cancer. Eur J Nucl Med Mol Imaging 39(6):925–935

    Article  PubMed  Google Scholar 

  41. Daisne JF, Duprez T, Weynand B et al (2004) Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 233(1):93–100

    Article  PubMed  Google Scholar 

  42. Biehl KJ, Kong FM, Dehdashti F et al (2006) 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 47(11):1808–1812

    PubMed  Google Scholar 

  43. Kubota R, Yamada S, Kubota K et al (1992) Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33(11):1972–1980

    CAS  PubMed  Google Scholar 

  44. Chen HH, Chiu NT, Su WC et al (2012) Prognostic value of whole-body total lesion glycolysis at pretreatment FDG PET-CT in non-small cell lung cancer. Radiology 264(2):559–566

    Article  PubMed  Google Scholar 

  45. Sürücü E, Demir Y, Şengöz T (2015) The correlation between the metabolic tumor volume and hematological parameters in patients with esophageal cancer. Ann Nucl Med 29(10):906–910

    Article  PubMed  CAS  Google Scholar 

  46. Jeong E, Hyun SH, Moon SH et al (2017) Relation between tumor FDG uptake and hematologic prognostic indicators in stage I lung cancer patients following curative resection. Medicine (Baltimore) 96(5):e5935

    Article  Google Scholar 

  47. Kwilas AR, Donahue RN, Tsang KY et al (2015) Immune consequences of tyrosine kinase inhibitors that synergize with cancer immunotherapy. Cancer Cell Microenviron 2(1):e677

    PubMed Central  PubMed  Google Scholar 

  48. Kurdziel KA, Lindenberg L, Choyke PL (2011) Oncologic angiogenesis imaging in the clinic—how and why. Imaging Med 3(4):445–457

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This article has been approved of as an Oral Presentation in 7. Turkish Society of Medical Oncology Congress (21–25 March 2018).

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cem Mirili.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirili, C., Guney, I.B., Paydas, S. et al. Prognostic significance of neutrophil/lymphocyte ratio (NLR) and correlation with PET–CT metabolic parameters in small cell lung cancer (SCLC). Int J Clin Oncol 24, 168–178 (2019). https://doi.org/10.1007/s10147-018-1338-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-018-1338-8

Keywords

Navigation