Skip to main content

Advertisement

Log in

Dietary glucosylceramides suppress tumor growth in a mouse xenograft model of head and neck squamous cell carcinoma by the inhibition of angiogenesis through an increase in ceramide

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

We previously reported that dietary glucosylceramides show cancer-prevention activity in a mouse xenograft model of human head and neck cancer cells (SCCKN). However, the mechanism was unclear. Ceramides, metabolites of glucosylceramides, induce apoptotic cell death in various malignancies. Here, we investigated the inhibitory effects of dietary glucosylceramides on tumor growth in vivo and in vitro.

Methods

SCCKN were subcutaneously inoculated into the right flanks of NOD/SCID mice. Mice were treated with or without dietary glucosylceramides (300 mg/kg) daily for 14 consecutive days after confirmation of tumor progression. Microvessel areas around the tumor were assessed by hematoxylin–eosin staining and immunohistochemistry of CD31, and, as markers for angiogenesis, protein levels of VEGF, VEGF receptor-2, and HIF-1α were assessed by Western blotting. Mass spectrometry was performed to measure the levels of sphingolipids in mouse serum after treatment with dietary glucosylceramides.

Results

Oral administration of glucosylceramides significantly decreased SCCKN growth in the xenograft model with inhibition of angioinvasion. In tumor-invasive areas, VEGF and HIF-1α in the tumor cells, and VEGF receptor-2 in endothelial cells decreased after treatment with dietary glucosylceramides. Dietary glucosylceramides increased serum levels of sphingosine-based ceramides as compared to the control. In SCCKN and UV♀2 cells, C6-ceramide suppressed the expressions of VEGF, VEGF receptor-2, and HIF-1α in vitro.

Conclusion

These results suggest that dietary glucosylceramides trigger the de novo pathway of ceramide synthesis, indicating that sphingosine-based ceramide suppresses the growth of head and neck tumors through the inhibition of pro-angiogenic signals such as VEGF, VEGF receptor-2, and HIF-1α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A et al (2007) Cancer statistics. CA Cancer J Clin 57(1):43–66

    Article  PubMed  Google Scholar 

  2. Chaigneau L et al (2006) Induction chemotherapy in patients with head and neck cancer. Bull Cancer 93(7):677–682

    PubMed  Google Scholar 

  3. Her C (2001) Nasopharyngeal cancer and the Southeast Asian patient. Am Fam Physician 63(9):1776–1782

    CAS  PubMed  Google Scholar 

  4. Fujiwara K et al (2011) Inhibitory effects of dietary glucosylceramides on squamous cell carcinoma of the head and neck in NOD/SCID mice. Int J Clin Oncol 16(2):133–140

    Article  CAS  PubMed  Google Scholar 

  5. Ideta R et al (2011) Orally administered glucosylceramide improves the skin barrier function by upregulating genes associated with the tight junction and cornified envelope formation. Biosci Biotechnol Biochem 75(8):1516–1523

    Article  CAS  PubMed  Google Scholar 

  6. Oku H et al (2007) Tumor specific cytotoxicity of glucosylceramide. Cancer Chemother Pharmacol 60(6):767–775

    Article  CAS  PubMed  Google Scholar 

  7. Inafuku M et al (2012) Beta-glucosylceramide administration (i.p.) activates natural killer T cells in vivo and prevents tumor metastasis in mice. Lipids 47(6):581–591

    Article  CAS  PubMed  Google Scholar 

  8. Barth BM et al (2010) Inhibition of NADPH oxidase by glucosylceramide confers chemoresistance. Cancer Biol Ther 10(11):1126–1136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Brady RO, Kanfer J, Shapiro D (1965) The metabolism of glucocerebrosides. I: purification and properties of a glucocerebroside-cleaving enzyme from spleen tissue. J Biol Chem 240:39–43

    CAS  PubMed  Google Scholar 

  10. Nilsson A (1968) Metabolism of sphingomyelin in the intestinal tract of the rat. Biochim Biophys Acta 164(3):575–584

    Article  CAS  PubMed  Google Scholar 

  11. Nilsson A (1969) Metabolism of cerebroside in the intestinal tract of the rat. Biochim Biophys Acta 187(1):113–121

    Article  CAS  PubMed  Google Scholar 

  12. Vesper H et al (1999) Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr 129(7):1239–1250

    CAS  PubMed  Google Scholar 

  13. Okazaki T, Bell RM, Hannun YA (1989) Sphingomyelin turnover induced by vitamin D3 in HL-60 cells: role in cell differentiation. J Biol Chem 264(32):19076–19080

    CAS  PubMed  Google Scholar 

  14. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9(2):139–150

    Article  CAS  PubMed  Google Scholar 

  15. Daido S et al (2004) Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 64(12):4286–4293

    Article  CAS  PubMed  Google Scholar 

  16. Kolesnick RN, Kronke M (1998) Regulation of ceramide production and apoptosis. Annu Rev Physiol 60:643–665

    Article  CAS  PubMed  Google Scholar 

  17. Ramos B et al (2003) Prevalence of necrosis in C2-ceramide-induced cytotoxicity in NB16 neuroblastoma cells. Mol Pharmacol 64(2):502–511

    Article  CAS  PubMed  Google Scholar 

  18. Yabu T et al (2005) Thalidomide-induced antiangiogenic action is mediated by ceramide through depletion of VEGF receptors, and is antagonized by sphingosine-1-phosphate. Blood 106(1):125–134

    Article  CAS  PubMed  Google Scholar 

  19. Che XM et al (1998) Angiogenesis as an unfavorable factor related to lymph node metastasis in early gastric cancer. Ann Surg Oncol 5(7):585–589

    Article  Google Scholar 

  20. Ikeda N et al (1999) Prognostic significance of angiogenesis in human pancreatic cancer. Br J Cancer 79(9–10):1553–1563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Linder S et al (2001) Pattern of distribution and prognostic value of angiogenesis in pancreatic duct carcinoma: a semiquantitative immunohistochemical study of 45 patients. Pancreas 22(3):240–247

    Article  CAS  PubMed  Google Scholar 

  22. Tanigawa N et al (1997) Correlation between expression of vascular endothelial growth factor and tumor vascularity, and patient outcome in human gastric carcinoma. J Clin Oncol 15(2):826–832

    CAS  PubMed  Google Scholar 

  23. Weidner N et al (1991) Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 324(1):1–8

    Article  CAS  PubMed  Google Scholar 

  24. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    Article  CAS  PubMed  Google Scholar 

  25. Wenger RH (2002) Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 16(10):1151–1162

    Article  CAS  PubMed  Google Scholar 

  26. Dvorak HF et al (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146(5):1029–1039

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Grothey A, Galanis E (2009) Targeting angiogenesis: progress with anti-VEGF treatment with large molecules. Nat Rev Clin Oncol 6(9):507–518

    Article  CAS  PubMed  Google Scholar 

  28. Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20(21):4368–4380

    Article  CAS  PubMed  Google Scholar 

  29. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676

    Article  CAS  PubMed  Google Scholar 

  30. Neuchrist C et al (2001) Vascular endothelial growth factor receptor 2 (VEGFR2) expression in squamous cell carcinomas of the head and neck. Laryngoscope 111(10):1834–1841

    Article  CAS  PubMed  Google Scholar 

  31. Takahashi T et al (2001) A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 20(11):2768–2778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Bielawski J et al (2009) Comprehensive quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods Mol Biol 579:443–467

    CAS  PubMed  Google Scholar 

  33. Menaldino DS et al (2003) Sphingoid bases and de novo ceramide synthesis: enzymes involved, pharmacology and mechanisms of action. Pharmacol Res 47(5):373–381

    Article  CAS  PubMed  Google Scholar 

  34. Kitatani K, Idkowiak-Baldys J, Hannun YA (2008) The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal 20(6):1010–1018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Asano M et al (1995) Inhibition of tumor growth and metastasis by an immunoneutralizing monoclonal antibody to human vascular endothelial growth factor/vascular permeability factor121. Cancer Res 55(22):5296–5301

    CAS  PubMed  Google Scholar 

  36. Bansode RR et al (2011) Coupling in vitro and in vivo paradigm reveals a dose dependent inhibition of angiogenesis followed by initiation of autophagy by C6-ceramide. Int J Biol Sci 7(5):629–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Gaengel K et al (2012) The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev Cell 23(3):587–599

    Article  CAS  PubMed  Google Scholar 

  38. Sugawara T et al (2004) Efflux of sphingoid bases by P-glycoprotein in human intestinal Caco-2 cells. Biosci Biotechnol Biochem 68(12):2541–2546

    Article  CAS  PubMed  Google Scholar 

  39. Sugawara T et al (2010) Intestinal absorption of dietary maize glucosylceramide in lymphatic duct cannulated rats. J Lipid Res 51(7):1761–1769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Takeda Science Foundation and performed under a joint research project with Shalome Co. Ltd. and Ono Pharmaceutical Co. Ltd. This study was supported in part by a grant of the Strategic Research Foundation Grant-aided Project for Private Universities from the Ministry of Education, Culture, Sport, Science, and Technology, Japan (MEXT) (No. S1201004) from Kanazawa Medical University (H2012-15), 2012-2016, from the SENSHIN Medical Research Foundation, from the Mizutani Foundation for Glycoscience; from the Collaborative Research from Kanazawa Medical University (C2012-4, C2013-1); and from the Chieko Sakurai Commemorative Grant.

Conflict of interest

They have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiro Okazaki.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazama, H., Kitatani, K., Fujiwara, K. et al. Dietary glucosylceramides suppress tumor growth in a mouse xenograft model of head and neck squamous cell carcinoma by the inhibition of angiogenesis through an increase in ceramide. Int J Clin Oncol 20, 438–446 (2015). https://doi.org/10.1007/s10147-014-0734-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-014-0734-y

Keywords

Navigation