Skip to main content
Log in

Hyperhomocysteinemia is a risk factor for postoperative ischemia in adult patients with moyamoya disease

  • Original Article
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Growing evidence has suggested that hyperhomocysteinemia (HHcy) is a risk factor for cerebral infarction. However, the effect of HHcy on postoperative cerebral ischemia is still unclear. We aim to investigate the relationship between HHcy and postoperative ischemia of adult patients with moyamoya disease (MMD). A total of 138 adult patients with MMD were prospectively recruited from July 1 to December 31, 2019. After excluding 14 patients accepting conservative therapy, all 124 patients who underwent surgical treatment were enrolled. Patients were grouped according to postoperative ischemia and HHcy presentation, respectively. Clinical data and laboratory examinations were compared by statistical analyses. Potential risk factors were evaluated by univariate and multivariate logistic regression analysis. Comparing to the normal, patients with postoperative ischemia were higher in serum homocysteine (Hcy) level (P = 0.039) and HHcy ratio (P = 0.035). Furthermore, HHcy was more common in males (P = 0.007) than females. Logistic analysis results showed that HHcy (OR 5.234, 95% CI 1.127–24.315; P = 0.035) was an independent risk factor. HHcy was significantly associated with postoperative ischemia in MMD patients. Our study found that HHcy was correlated to the risk of postoperative ischemia. HHcy can be used as an indicator and a potential therapeutic target for postoperative ischemia in adult patients with MMD. URL: http://www.chictr.org. Unique identifier: ChiCTR2000031412.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Acker G, Fekonja L, Vajkoczy P (2018) Surgical management of moyamoya disease. Stroke 49:476–482. https://doi.org/10.1161/strokeaha.117.018563

    Article  PubMed  Google Scholar 

  2. Ando T, Shimada Y, Fujiwara S, Yoshida K, Kobayashi M, Kubo Y, Terasaki K, Ando S, Ogasawara K (2020) Revascularisation surgery improves cognition in adult patients with moyamoya disease. J Neurol Neurosurg Psychiatry 91:332–334. https://doi.org/10.1136/jnnp-2019-321069

    Article  PubMed  Google Scholar 

  3. Anniwaer J, Liu M, Xue K, Maimaiti A, Xiamixiding A (2019) Homocysteine might increase the risk of recurrence in patients presenting with primary cerebral infarction. Int J Neurosci 129:654–659. https://doi.org/10.1080/00207454.2018.1517762

    Article  PubMed  Google Scholar 

  4. Bang OY, Fujimura M, Kim SK (2016) The pathophysiology of moyamoya disease: an update. J Stroke 18:12–20. https://doi.org/10.5853/jos.2015.01760

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cho H, Jo K, Yu J, Yeon J, Hong S, Kim J (2017) Low flow velocity in the middle cerebral artery predicting infarction after bypass surgery in adult moyamoya disease. J Neurosurg 126:1573–1577. https://doi.org/10.3171/2016.3.jns152256

    Article  PubMed  Google Scholar 

  6. Coppola A, Davi G, De Stefano V, Mancini F, Cerbone A, Di Minno G (2000) Homocysteine, coagulation, platelet function, and thrombosis. Semin Thromb Hemost 26:243–254. https://doi.org/10.1055/s-2000-8469

    Article  CAS  PubMed  Google Scholar 

  7. Deep SN, Mitra S, Rajagopal S, Paul S, Poddar R (2019) GluN2A-NMDA receptor-mediated sustained Ca(2+) influx leads to homocysteine-induced neuronal cell death. J Biol Chem 294:11154–11165. https://doi.org/10.1074/jbc.RA119.008820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deng X, Gao F, Zhang D, Zhang Y, Wang R, Wang S, Cao Y, Zhao Y, Pan Y, Liu X, Zhang Q, Zhao J (2018) Direct versus indirect bypasses for adult ischemic-type moyamoya disease: a propensity score-matched analysis. J Neurosurg 128:1785–1791. https://doi.org/10.3171/2017.2.jns162405

    Article  PubMed  Google Scholar 

  9. Deng X, Gao F, Zhang D, Zhang Y, Wang R, Wang S, Cao Y, Zhao Y, Pan Y, Ye X, Liu X, Zhang Q, Wang J, Yang Z, Zhao M, Zhao J (2018) Effects of different surgical modalities on the clinical outcome of patients with moyamoya disease: a prospective cohort study. J Neurosurg 128:1327–1337. https://doi.org/10.3171/2016.12.jns162626

    Article  PubMed  Google Scholar 

  10. Fan H, Yang S, Li Y, Yin J, Qin W, Yang L, Yuan J, Hu W (2018) Assessment of homocysteine as a diagnostic and early prognostic biomarker for patients with acute lacunar infarction. Eur Neurol 79:54–62. https://doi.org/10.1159/000484893

    Article  CAS  PubMed  Google Scholar 

  11. Ge P, Zhang Q, Ye X, Liu X, Deng X, Wang J, Wang R, Zhang Y, Zhang D, Zhao J (2020) Modifiable risk factors associated with moyamoya disease: a case-control study. Stroke 51:2472–2479. https://doi.org/10.1161/strokeaha.120.030027

    Article  CAS  PubMed  Google Scholar 

  12. Guidelines for diagnosis and treatment of moyamoya disease (spontaneous occlusion of the circle of Willis) (2012). Neurologia medico-chirurgica 52:245-266. https://doi.org/10.2176/nmc.52.245

  13. Hankey G, Eikelboom J (2001) Homocysteine and stroke. Curr Opin Neurol 14:95–102. https://doi.org/10.1097/00019052-200102000-00015

    Article  CAS  PubMed  Google Scholar 

  14. Holmes M, Newcombe P, Hubacek J, Sofat R, Ricketts S, Cooper J, Breteler M, Bautista L, Sharma P, Whittaker J, Smeeth L, Fowkes F, Algra A, Shmeleva V, Szolnoki Z, Roest M, Linnebank M, Zacho J, Nalls M, Singleton A, Ferrucci L, Hardy J, Worrall B, Rich S, Matarin M, Norman P, Flicker L, Almeida O, van Bockxmeer F, Shimokata H, Khaw K, Wareham N, Bobak M, Sterne J, Smith G, Talmud P, van Duijn C, Humphries S, Price J, Ebrahim S, Lawlor D, Hankey G, Meschia J, Sandhu M, Hingorani A, Casas J (2011) Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials. Lancet (London, England) 378:584–594. https://doi.org/10.1016/s0140-6736(11)60872-6

    Article  CAS  Google Scholar 

  15. Kaplan P, Tatarkova Z, Sivonova M, Racay P, Lehotsky J (2020) Homocysteine and mitochondria in cardiovascular and cerebrovascular systems. Int J Mol Sci 21. https://doi.org/10.3390/ijms21207698

  16. Kim J, Jeon J (2014) An update on the diagnosis and treatment of adult Moyamoya disease taking into consideration controversial issues. Neurol Res 36:407–416. https://doi.org/10.1179/1743132814y.0000000351

    Article  PubMed  Google Scholar 

  17. Kim T, Oh C, Bang J, Kim J, Cho W (2016) Moyamoya disease: treatment and outcomes. J Stroke 18:21–30. https://doi.org/10.5853/jos.2015.01739

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kraemer M, Berlit P, Diesner F, Khan N (2012) What is the expert’s option on antiplatelet therapy in moyamoya disease? Results of a worldwide survey. Eur J Neurol 19:163–167. https://doi.org/10.1111/j.1468-1331.2011.03481.x

    Article  CAS  PubMed  Google Scholar 

  19. Kuriyama S, Kusaka Y, Fujimura M, Wakai K, Tamakoshi A, Hashimoto S, Tsuji I, Inaba Y, Yoshimoto T (2008) Prevalence and clinicoepidemiological features of moyamoya disease in Japan: findings from a nationwide epidemiological survey. Stroke 39:42–47. https://doi.org/10.1161/strokeaha.107.490714

    Article  PubMed  Google Scholar 

  20. Kuroda S, Houkin K (2008) Moyamoya disease: current concepts and future perspectives. Lancet Neurol 7:1056–1066. https://doi.org/10.1016/s1474-4422(08)70240-0

    Article  PubMed  Google Scholar 

  21. Lai W, Kan M (2015) Homocysteine-induced endothelial dysfunction. Ann Nutr Metab 67:1–12. https://doi.org/10.1159/000437098

    Article  CAS  PubMed  Google Scholar 

  22. Ma Y, Li L, Geng X, Hong Y, Shang X, Tan Z, Song Y, Zhao G, Zhao B, Tian M (2016) Correlation between hyperhomocysteinemia and outcomes of patients with acute myocardial infarction. Am J Ther 23:e1464–e1468. https://doi.org/10.1097/mjt.0000000000000130

    Article  PubMed  Google Scholar 

  23. Moll S, Varga E (2015) Homocysteine and MTHFR mutations. Circulation 132:e6–e9. https://doi.org/10.1161/circulationaha.114.013311

    Article  CAS  PubMed  Google Scholar 

  24. Mukerji N, Cook D, Steinberg G (2015) Is local hypoperfusion the reason for transient neurological deficits after STA-MCA bypass for moyamoya disease? J Neurosurg 122:90–94. https://doi.org/10.3171/2014.8.jns132413

    Article  PubMed  Google Scholar 

  25. Oki K, Katsumata M, Izawa Y, Takahashi S, Suzuki N, Houkin K (2018) Trends of antiplatelet therapy for the management of moyamoya disease in Japan: results of a nationwide survey. J Stroke Cerebrovasc Dis 27:3605–3612. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.08.030

    Article  PubMed  Google Scholar 

  26. Pandey P, Steinberg G (2011) Neurosurgical advances in the treatment of moyamoya disease. Stroke 42:3304–3310. https://doi.org/10.1161/strokeaha.110.598565

    Article  PubMed  Google Scholar 

  27. Peng Y, Huang M, Xue Y, Pan J, Lin C (2020) Association of hyperhomocysteinemia with increased coronary microcirculatory resistance and poor short-term prognosis of patients with acute myocardial infarction after elective percutaneous coronary intervention. Biomed Res Int 2020:1710452–1710458. https://doi.org/10.1155/2020/1710452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pezzini A, Del Zotto E, Padovani A (2007) Homocysteine and cerebral ischemia: pathogenic and therapeutical implications. Curr Med Chem 14:249–263. https://doi.org/10.2174/092986707779941140

    Article  CAS  PubMed  Google Scholar 

  29. Poddar R, Paul S (2009) Homocysteine-NMDA receptor-mediated activation of extracellular signal-regulated kinase leads to neuronal cell death. J Neurochem 110:1095–1106. https://doi.org/10.1111/j.1471-4159.2009.06207.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qian Y, Huang B, Hu Z, Wang J, Zhao P, Li X (2020) Analysis of factors related to cerebral infarction after direct bypass surgery in adults with moyamoya disease. Cerebrovasc Dis (Basel, Switzerland) 49:55–61. https://doi.org/10.1159/000504743

    Article  Google Scholar 

  31. Sato K, Morofuji Y, Horie N, Izumo T, Anda T, Matsuo T (2020) Hyperhomocysteinemia causes severe intraoperative thrombotic tendency in superficial temporal artery-middle cerebral artery bypass. J Stroke Cerebrovasc Dis 29:104633. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104633

    Article  PubMed  Google Scholar 

  32. Scott R, Smith E (2009) Moyamoya disease and moyamoya syndrome. N Engl J Med 360:1226–1237. https://doi.org/10.1056/NEJMra0804622

    Article  CAS  PubMed  Google Scholar 

  33. Scott RM, Smith ER (2009) Moyamoya disease and moyamoya syndrome. N Engl J Med 360:1226–1237. https://doi.org/10.1056/NEJMra0804622

    Article  CAS  PubMed  Google Scholar 

  34. Spence J (2007) Homocysteine-lowering therapy: a role in stroke prevention? Lancet Neurol 6:830–838. https://doi.org/10.1016/s1474-4422(07)70219-3

    Article  CAS  PubMed  Google Scholar 

  35. Suzuki J, Takaku A (1969) Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol 20:288–299. https://doi.org/10.1001/archneur.1969.00480090076012

    Article  CAS  PubMed  Google Scholar 

  36. Wu W, Guan Y, Xu K, Fu X, Lei X, Lei L, Zhang Z, Cheng Y, Li Y (2016) Plasma homocysteine levels predict the risk of acute cerebral infarction in patients with carotid artery lesions. Mol Neurobiol 53:2510–2517. https://doi.org/10.1007/s12035-015-9226-y

    Article  CAS  PubMed  Google Scholar 

  37. Yamada S, Oki K, Itoh Y, Kuroda S, Houkin K, Tominaga T, Miyamoto S, Hashimoto N, Suzuki N (2016) Effects of surgery and antiplatelet therapy in ten-year follow-up from the Registry Study of Research Committee on Moyamoya Disease in Japan. J Stroke Cerebrovasc Dis 25:340–349. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.10.003

    Article  PubMed  Google Scholar 

  38. Yang Z, Wang L, Zhang W, Wang X, Zhou S (2016) Plasma homocysteine involved in methylation and expression of thrombomodulin in cerebral infarction. Biochem Biophys Res Commun 473:1218–1222. https://doi.org/10.1016/j.bbrc.2016.04.042

    Article  CAS  PubMed  Google Scholar 

  39. Yu L, Ma L, Huang Z, Shi Z, Wang R, Zhao Y, Zhang D (2019) Revascularization surgery in patients with ischemic-type moyamoya disease: predictors for postoperative stroke and long-term outcomes. World Neurosurg 128:e582–e596. https://doi.org/10.1016/j.wneu.2019.04.214

    Article  PubMed  Google Scholar 

  40. Yuan X, Wang T, Gao J, Wang Y, Chen Y, Kaliannan K, Li X, Xiao J, Ma T, Zhang L, Shao Z (2020) Associations of homocysteine status and homocysteine metabolism enzyme polymorphisms with hypertension and dyslipidemia in a Chinese hypertensive population. Clin Exp Hyperten (New York, NY : 1993) 42:52–60. https://doi.org/10.1080/10641963.2019.1571599

    Article  CAS  Google Scholar 

  41. Zaric B, Obradovic M, Bajic V, Haidara M, Jovanovic M, Isenovic E (2019) Homocysteine and hyperhomocysteinaemia. Curr Med Chem 26:2948–2961. https://doi.org/10.2174/0929867325666180313105949

    Article  CAS  PubMed  Google Scholar 

  42. Zhang J, Li S, Fujimura M, Lau T, Wu X, Hu M, Zheng H, Xu H, Zhao W, Li X, Chen J (2019) Hemodynamic analysis of the recipient parasylvian cortical arteries for predicting postoperative hyperperfusion during STA-MCA bypass in adult patients with moyamoya disease. J Neurosurg 134:1–8. https://doi.org/10.3171/2019.10.jns191207

    Article  Google Scholar 

  43. Zhao M, Deng X, Zhang D, Wang S, Zhang Y, Wang R, Zhao J (2018) Risk factors for and outcomes of postoperative complications in adult patients with moyamoya disease. J Neurosurg 130:1–12. https://doi.org/10.3171/2017.10.jns171749

    Article  Google Scholar 

  44. Zhao Y, Lu J, Yu S, Li J, Deng X, Zhang Y, Zhang D, Wang R, Wang H, Zhao Y (2019) Comparison of long-term effect between direct and indirect bypass for pediatric ischemic-type moyamoya disease: a propensity score-matched study. Front Neurol 10:795. https://doi.org/10.3389/fneur.2019.00795

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhao Y, Yu S, Lu J, Yu L, Li J, Zhang Y, Zhang D, Wang R, Zhao Y (2018) Direct bypass surgery vs. combined bypass surgery for hemorrhagic moyamoya disease: a comparison of angiographic outcomes. Front Neurol 9:1121. https://doi.org/10.3389/fneur.2018.01121

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Consent for publication

All authors have read and approved the final manuscript.

Code availability

The SPSS software (version 26.0) was used for all the statistical analyses.

Funding

This work was supported by grants from the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2015BAI12B04); Beijing Municipal Organization Department talents project (2015000021469G219); National Natural Science Foundation of China (81701137 and 81870904); and Beijing Municipal Administration of Hospitals’ Mission Plan (SML20150501).

Author information

Authors and Affiliations

Authors

Contributions

Junsheng Li analyzed the results and wrote the manuscript. Peicong Ge made the statistical comparison. Qian Zhang and Fa Lin collected the patient data. Dong Zhang, Yan Zhang, and Rong Wang revised the manuscript. Jizong Zhao and Wen Wang designed the study.

Corresponding authors

Correspondence to Wen Wang or Jizong Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee in Beijing Tiantan Hospital.

Informed consent

Patient informed consents were obtained from all participants.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Ge, P., Zhang, Q. et al. Hyperhomocysteinemia is a risk factor for postoperative ischemia in adult patients with moyamoya disease. Neurosurg Rev 44, 2913–2921 (2021). https://doi.org/10.1007/s10143-021-01482-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-021-01482-9

Keywords

Navigation