Skip to main content

Advertisement

Log in

Factors affecting formation and rupture of intracranial saccular aneurysms

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Unruptured intracranial aneurysms represent a decisional challenge. Treatment risks have to be balanced against an unknown probability of rupture. A better understanding of the physiopathology is the basis for a better prediction of the natural history of an individual patient. Knowledge about the possible determining factors arises from a careful comparison between ruptured versus unruptured aneurysms and from the prospective observation and analysis of unbiased series with untreated, unruptured aneurysms. The key point is the correct identification of the determining variables for the fate of a specific aneurysm in a given individual. Thus, the increased knowledge of mechanisms of formation and eventual rupture of aneurysms should provide significant clues to the identification of rupture-prone aneurysms. Factors like structural vessel wall defects, local hemodynamic stress determined also by peculiar geometric configurations, and inflammation as trigger of a wall remodeling are crucial. In this sense the study of genetic modifiers of inflammatory responses together with the computational study of the vessel tree might contribute to identify aneurysms prone to rupture. The aim of this article is to underline the value of a unifying hypothesis that merges the role of geometry, with that of hemodynamics and of genetics as concerns vessel wall structure and inflammatory pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agner C, Dujovny M (2009) Historical evolution of neuroendovascular surgery of intracranial aneurysms: from coils to polymers. Neurol Res 31(6):632–637. doi:10.1179/174313209X455790

    Article  PubMed  Google Scholar 

  2. Aissi M, Younes-Mhenni S, Jerbi-Ommezzine S, Boughammoura-Bouatay A, Frih-Ayed M, Sfar MH (2010) Tuberous sclerosis and intracranial aneurysms: a rare association. Rev Neurol (Paris) 166(11):935–939. doi:10.1016/j.neurol.2009.12.011

    Article  CAS  Google Scholar 

  3. Amenta PS, Yadla S, Campbell PG, Maltenfort MG, Dey S, Ghosh S, Ali MS, Jallo JI, Tjoumakaris SI, Gonzalez LF, Dumont AS, Rosenwasser RH, Jabbour PM (2012) Analysis of nonmodifiable risk factors for intracranial aneurysm rupture in a large, retrospective cohort. Neurosurgery 70(3):693–699. doi:10.1227/NEU.0b013e3182354d68, discussion 699–701

    Article  PubMed  Google Scholar 

  4. Antiga L, Steinman DA (accessed August 2012) Vascular modelling toolkit. http://www.vmtk.org. Accessed August 3rd 2012

  5. Atlas SW, Sheppard L, Goldberg HI, Hurst RW, Listerud J, Flamm E (1997) Intracranial aneurysms: detection and characterization with MR angiography with use of an advanced postprocessing technique in a blinded-reader study. Radiology 203(3):807–814

    CAS  PubMed  Google Scholar 

  6. Ausman JI (2004) The unruptured intracranial aneurysm study-II: a critique of the second study. Surg Neurol 62(2):91–94. doi:10.1016/j.surneu.2004.05.001

    Google Scholar 

  7. Austin G, Fisher S, Dickson D, Anderson D, Richardson S (1993) The significance of the extracellular matrix in intracranial aneurysms. Ann Clin Lab Sci 23(2):97–105

    CAS  PubMed  Google Scholar 

  8. Bacigaluppi S, Fontanella M, Manninen P, Ducati A, Tredici G, Gentili F (2011) Monitoring techniques for prevention of procedure-related ischemic damage in aneurysm surgery. World Neurosurg. doi:10.1016/j.wneu.2011.11.034

    PubMed  Google Scholar 

  9. Balocco S, Camara O, Frangi AF (2008) Towards regional elastography of intracranial aneurysms. Med Image Comput Comput Assist Interv 11(Pt 2):131–138

    PubMed  Google Scholar 

  10. Benoit BG, Wortzman G (1973) Traumatic cerebral aneurysms. Clinical features and natural history. J Neurol Neurosurg Psychiatry 36(1):127–138

    Article  CAS  PubMed  Google Scholar 

  11. Biros E, Golledge J (2008) Meta-analysis of whole-genome linkage scans for intracranial aneurysm. Neurosci lett 431(1):31–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bonneville F, Sourour N, Biondi A (2006) Intracranial aneurysms: an overview. Neuroimaging Clin N Am 16(3):371–382. doi:10.1016/j.nic.2006.05.001, vii

    Article  PubMed  Google Scholar 

  13. Boussel L, Rayz V, McCulloch C, Martin A, Acevedo-Bolton G, Lawton M, Higashida R, Smith WS, Young WL, Saloner D (2008) Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39(11):2997–3002. doi:10.1161/STROKEAHA.108.521617

    Article  PubMed Central  PubMed  Google Scholar 

  14. Brinjikji W, Rabinstein AA, Lanzino G, Kallmes DF, Cloft HJ (2011) Effect of age on outcomes of treatment of unruptured cerebral aneurysms: a study of the National Inpatient Sample 2001–2008. Stroke 42(5):1320–1324. doi:10.1161/STROKEAHA.110.607986

    Article  PubMed  Google Scholar 

  15. Broderick JP, Brown RD Jr, Sauerbeck L, Hornung R, Huston J 3rd, Woo D, Anderson C, Rouleau G, Kleindorfer D, Flaherty ML, Meissner I, Foroud T, Moomaw EC, Connolly ES (2009) Greater rupture risk for familial as compared to sporadic unruptured intracranial aneurysms. Stroke 40(6):1952–1957. doi:10.1161/STROKEAHA.108.542571

    Article  PubMed Central  PubMed  Google Scholar 

  16. Brown RD Jr, Wiebers DO, Forbes GS (1990) Unruptured intracranial aneurysms and arteriovenous malformations: frequency of intracranial hemorrhage and relationship of lesions. J Neurosurg 73(6):859–863. doi:10.3171/jns.1990.73.6.0859

    Article  PubMed  Google Scholar 

  17. Burns JD, Huston J 3rd, Layton KF, Piepgras DG, Brown RD Jr (2009) Intracranial aneurysm enlargement on serial magnetic resonance angiography: frequency and risk factors. Stroke 40(2):406–411. doi:10.1161/STROKEAHA.108.519165

    Article  PubMed  Google Scholar 

  18. Castro MA, Putman CM, Cebral JR (2006) Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. AJNR Am J Neuroradiol 27(8):1703–1709

    CAS  PubMed  Google Scholar 

  19. Cárdenes R, Pozo JM, Bogunovic H, Larrabide I, Frangi AF (2011) Automatic aneurysm neck detection using surface Voronoi diagrams. IEEE Trans Med Imaging 30(10):1863–76

    Google Scholar 

  20. Cebral JR, Castro MA, Burgess JE, Pergolizzi RS, Sheridan MJ, Putman CM (2005) Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am J Neuroradiol 26(10):2550–2559

    PubMed  Google Scholar 

  21. Cebral JR, Mut F, Weir J, Putman CM (2011) Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am J Neuroradiol 32(2):264–270. doi:10.3174/ajnr.A2274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Koch WJ, Dumont AS (2012) Biology of intracranial aneurysms: role of inflammation. J Cereb Blood Flow Metab 32(9):1659–1676. doi:10.1038/jcbfm.2012.84

    Article  CAS  PubMed  Google Scholar 

  23. Chien A, Sayre J, Vinuela F (2011) Comparative morphological analysis of the geometry of ruptured and unruptured aneurysms. Neurosurgery 69(2):349–356. doi:10.1227/NEU.0b013e31821661c3

    Article  PubMed  Google Scholar 

  24. Chow MM, Thorell WE, Rasmussen PA (2005) Aneurysm regression after coil embolization of a concurrent aneurysm. AJNR Am J Neuroradiol 26(4):917–921

    PubMed  Google Scholar 

  25. Chyatte D, Bruno G, Desai S, Todor DR (1999) Inflammation and intracranial aneurysms. Neurosurgery 45(5):1137–1146, discussion 1146–1137

    Article  CAS  PubMed  Google Scholar 

  26. Clare CE, Barrow DL (1992) Infectious intracranial aneurysms. Neurosurg Clin N Am 3(3):551–566

    CAS  PubMed  Google Scholar 

  27. Cloft HJ, Kallmes DF, Kallmes MH, Goldstein JH, Jensen ME, Dion JE (1998) Prevalence of cerebral aneurysms in patients with fibromuscular dysplasia: a reassessment. J Neurosurg 88(3):436–440. doi:10.3171/jns.1998.88.3.0436

    Article  CAS  PubMed  Google Scholar 

  28. Conway JE, Hutchins GM, Tamargo RJ (2001) Lack of evidence for an association between neurofibromatosis type I and intracranial aneurysms: autopsy study and review of the literature. Stroke 32(11):2481–2485

    Article  CAS  PubMed  Google Scholar 

  29. Costalat V, Sanchez M, Ambard D, Thines L, Lonjon N, Nicoud F, Brunel H, Lejeune JP, Dufour H, Bouillot P, Lhaldky JP, Kouri K, Segnarbieux F, Maurage CA, Lobotesis K, Villa-Uriol MC, Zhang C, Frangi AF, Mercier G, Bonafe A, Sarry L, Jourdan F (2011) Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping (IRRAs Project). J Biomech 44(15):2685–2691. doi:10.1016/j.jbiomech.2011.07.026

    Article  CAS  PubMed  Google Scholar 

  30. da Costa LB, Gunnarsson T, Wallace MC (2004) Unruptured intracranial aneurysms: natural history and management decisions. Neurosurg Focus 17(5):E6

    Article  PubMed  Google Scholar 

  31. Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, Garcia-Cardena G, Gimbrone MA Jr (2004) Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci U S A 101(41):14871–14876. doi:10.1073/pnas.0406073101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Davies PF, Remuzzi A, Gordon EJ, Dewey CF Jr, Gimbrone MA Jr (1986) Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci U S A 83(7):2114–2117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Dehdashti AR, Le Roux A, Bacigaluppi S, Wallace MC (2012) Long-term visual outcome and aneurysm obliteration rate for very large and giant ophthalmic segment aneurysms: assessment of surgical treatment. Acta Neurochir (Wien) 154(1):43–52. doi:10.1007/s00701-011-1167-2

    Article  Google Scholar 

  34. Dhar S, Tremmel M, Mocco J, Kim M, Yamamoto J, Siddiqui AH, Hopkins LN, Meng H (2008) Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 63(2):185–196. doi:10.1227/01.NEU.0000316847.64140.81, discussion 196–187

    Article  PubMed Central  PubMed  Google Scholar 

  35. Dimmeler S, Haendeler J, Rippmann V, Nehls M, Zeiher AM (1996) Shear stress inhibits apoptosis of human endothelial cells. FEBS Lett 399(1–2):71–74

    Article  CAS  PubMed  Google Scholar 

  36. Fang H (ed) (1958) A comparison of blood vessels of the brain and peripheral blood vessels. Cerebral vascular diseases, vol 24. Grune and Stratton, New York

    Google Scholar 

  37. Ferguson GG (1970) Turbulence in human intracranial saccular aneurysms. J Neurosurg 33(5):485–497. doi:10.3171/jns.1970.33.5.0485

    Article  CAS  PubMed  Google Scholar 

  38. Ferguson GG (1972) Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms. J Neurosurg 37(6):666–677. doi:10.3171/jns.1972.37.6.0666

    Article  CAS  PubMed  Google Scholar 

  39. Finlay HM, Whittaker P, Canham PB (1998) Collagen organization in the branching region of human brain arteries. Stroke 29(8):1595–1601

    Article  CAS  PubMed  Google Scholar 

  40. Fisher M, Zito JL (1983) Focal cerebral ischemia distal to a cerebral aneurysm in hereditary hemorrhagic telangiectasia. Stroke 14(3):419–421

    Article  CAS  PubMed  Google Scholar 

  41. Fontanella M, Rainero I, Gallone S, Rubino E, Fenoglio P, Valfre W, Garbossa D, Carlino C, Ducati A, Pinessi L (2007) Tumor necrosis factor-alpha gene and cerebral aneurysms. Neurosurgery 60(4):668–672. doi:10.1227/01.NEU.0000255417.93678.49, discussion 672–663

    Article  PubMed  Google Scholar 

  42. Forget TR Jr, Benitez R, Veznedaroglu E, Sharan A, Mitchell W, Silva M, Rosenwasser RH (2001) A review of size and location of ruptured intracranial aneurysms. Neurosurgery 49(6):1322–1325, discussion 1325–1326

    Article  PubMed  Google Scholar 

  43. Foutrakis GN, Yonas H, Sclabassi RJ (1999) Saccular aneurysm formation in curved and bifurcating arteries. AJNR Am J Neuroradiol 20(7):1309–1317

    CAS  PubMed  Google Scholar 

  44. Friedman MH (1993) Arteriosclerosis research using vascular flow models: from 2-D branches to compliant replicas. J Biomech Eng 115(4B):595–601

    Article  CAS  PubMed  Google Scholar 

  45. Friedman SA (1981) The evaluation and treatment of patients with arterial aneurysms. Med Clin North Am 65(1):83–103

    CAS  PubMed  Google Scholar 

  46. Gabriel RA, Kim H, Sidney S, McCulloch CE, Singh V, Johnston SC, Ko NU, Achrol AS, Zaroff JG, Young WL (2010) Ten-year detection rate of brain arteriovenous malformations in a large, multiethnic, defined population. Stroke 41(1):21–26. doi:10.1161/STROKEAHA.109.566018

    Article  PubMed Central  PubMed  Google Scholar 

  47. Ghinea N, van Gelder JM (2004) A probabilistic and interactive decision–analysis system for unruptured intracranial aneurysms. Neurosurg Focus 17(5):E9

    Article  PubMed  Google Scholar 

  48. Gimbrone MA Jr, Topper JN, Nagel T, Anderson KR, Garcia-Cardena G (2000) Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci 902:230–239, discussion 239–240

    Article  CAS  PubMed  Google Scholar 

  49. Greving JP, Rinkel GJ, Buskens E, Algra A (2009) Cost-effectiveness of preventive treatment of intracranial aneurysms: new data and uncertainties. Neurology 73(4):258–265. doi:10.1212/01.wnl.0b013e3181a2a4ea

    Article  PubMed  Google Scholar 

  50. Hasan DM, Mahaney KB, Magnotta VA, Kung DK, Lawton MT, Hashimoto T, Winn HR, Saloner D, Martin A, Gahramanov S, Dosa E, Neuwelt E, Young WL (2012) Macrophage imaging within human cerebral aneurysms wall using ferumoxytol-enhanced MRI: a pilot study. Arterioscler Thromb Vasc Biol 32(4):1032–1038. doi:10.1161/ATVBAHA.111.239871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Hoh BL, Nathoo S, Chi YY, Mocco J, Barker FG 2nd (2011) Incidence of seizures or epilepsy after clipping or coiling of ruptured and unruptured cerebral aneurysms in the nationwide inpatient sample database: 2002–2007. Neurosurgery 69(3):644–650. doi:10.1227/NEU.0b013e31821bc46d, discussion 650

    Article  PubMed  Google Scholar 

  52. Hoi Y, Meng H, Woodward SH, Bendok BR, Hanel RA, Guterman LR, Hopkins LN (2004) Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. J Neurosurg 101(4):676–681. doi:10.3171/jns.2004.101.4.0676

    Article  PubMed  Google Scholar 

  53. Huttunen T, von und zu Fraunberg M, Frosen J, Lehecka M, Tromp G, Helin K, Koivisto T, Rinne J, Ronkainen A, Hernesniemi J, Jaaskelainen JE (2010) Saccular intracranial aneurysm disease: distribution of site, size, and age suggests different etiologies for aneurysm formation and rupture in 316 familial and 1454 sporadic eastern Finnish patients. Neurosurgery 66(4):631–638. doi:10.1227/01.NEU.0000367634.89384.4B, discussion 638

    Article  PubMed  Google Scholar 

  54. Inci S, Spetzler RF (2000) Intracranial aneurysms and arterial hypertension: a review and hypothesis. Surg Neurol 53(6):530–540, discussion 540–532

    Article  CAS  PubMed  Google Scholar 

  55. Jayaraman T, Paget A, Shin YS, Li X, Mayer J, Chaudhry H, Niimi Y, Silane M, Berenstein A (2008) TNF-alpha-mediated inflammation in cerebral aneurysms: a potential link to growth and rupture. Vasc Health Risk Manag 4(4):805–817

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Joo SW, Lee SI, Noh SJ, Jeong YG, Kim MS, Jeong YT (2009) What is the significance of a large number of ruptured aneurysms smaller than 7 mm in diameter? J Korean Neurosurg Soc 45(2):85–89. doi:10.3340/jkns.2009.45.2.85

    Article  PubMed Central  PubMed  Google Scholar 

  57. Jou LD, Wong G, Dispensa B, Lawton MT, Higashida RT, Young WL, Saloner D (2005) Correlation between lumenal geometry changes and hemodynamics in fusiform intracranial aneurysms. AJNR Am J Neuroradiol 26(9):2357–2363

    PubMed  Google Scholar 

  58. Kataoka K, Taneda M, Asai T, Kinoshita A, Ito M, Kuroda R (1999) Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke 30(7):1396–1401

    Article  CAS  PubMed  Google Scholar 

  59. Kataoka K, Taneda M, Asai T, Yamada Y (2000) Difference in nature of ruptured and unruptured cerebral aneurysms. Lancet 355(9199):203. doi:10.1016/S0140-6736(99)03881-7

    Article  CAS  PubMed  Google Scholar 

  60. Khurana VG, Meissner I, Meyer FB (2004) Update on genetic evidence for rupture-prone compared with rupture-resistant intracranial saccular aneurysms. Neurosurg Focus 17(5):E7

    Article  PubMed  Google Scholar 

  61. Kilic T, Sohrabifar M, Kurtkaya O, Yildirim O, Elmaci I, Gunel M, Pamir MN (2005) Expression of structural proteins and angiogenic factors in normal arterial and unruptured and ruptured aneurysm walls. Neurosurgery 57(5):997–1007, discussion 1997–1007

    Article  PubMed  Google Scholar 

  62. Krischek B, Kasuya H, Tajima A, Akagawa H, Sasaki T, Yoneyama T, Ujiie H, Kubo O, Bonin M, Takakura K, Hori T, Inoue I (2008) Network-based gene expression analysis of intracranial aneurysm tissue reveals role of antigen presenting cells. Neuroscience 154(4):1398–1407. doi:10.1016/j.neuroscience.2008.04.049

    Article  CAS  PubMed  Google Scholar 

  63. Kumar BV, Naidu KB (1996) Hemodynamics in aneurysm. Comput Biomed Res 29(2):119–139

    Article  CAS  PubMed  Google Scholar 

  64. Laaksamo E, Ramachandran M, Frosen J, Tulamo R, Baumann M, Friedlander RM, Harbaugh RE, Hernesniemi J, Niemela M, Raghavan ML, Laakso A (2012) Intracellular signaling pathways and size, shape, and rupture history of human intracranial aneurysms. Neurosurgery 70(6):1565–1572. doi:10.1227/NEU.0b013e31824c057e, discussion 1572–1563

    Article  PubMed  Google Scholar 

  65. Larrabide I, Cruz Villa-Uriol M, Cárdenes R, Pozo JM, Macho J, San Roman L, Blasco J, Vivas E, Marzo A, Hose DR, Frangi AF (2011) Three-dimensional morphological analysis of intracranial aneurysms: a fully automated method for aneurysm sac isolation and quantification. Med Phys 38(5):2439–49

  66. Lasheras JC (2007) The biomechanics of arterial aneurysms. Annu Rev Fluid Mech 39:293–319. doi:10.1146/annurev.fluid.39.050905.110128

    Article  Google Scholar 

  67. Leblanc R, Melanson D, Tampieri D, Guttmann RD (1995) Familial cerebral aneurysms: a study of 13 families. Neurosurgery 37(4):633–638, discussion 638–639

    Article  CAS  PubMed  Google Scholar 

  68. Liepsch D (1993) Fundamental flow studies in models of human arteries. Front Med Biol Eng 5(1):51–55

    CAS  PubMed  Google Scholar 

  69. Liepsch D (2002) An introduction to biofluid mechanics—basic models and applications. J Biomech 35(4):415–435

    Article  PubMed  Google Scholar 

  70. Ma B, Harbaugh RE, Raghavan ML (2004) Three-dimensional geometrical characterization of cerebral aneurysms. Ann Biomed Eng 32(2):264–273

    Article  PubMed  Google Scholar 

  71. Ma D, Tremmel M, Paluch RA, Levy EI, Meng H, Mocco J (2010) Size ratio for clinical assessment of intracranial aneurysm rupture risk. Neurol Res 32(5):482–486. doi:10.1179/016164109X12581096796558

    Article  PubMed  Google Scholar 

  72. Mackey J, Brown RD Jr, Moomaw CJ, Sauerbeck L, Hornung R, Gandhi D, Woo D, Kleindorfer D, Flaherty ML, Meissner I, Anderson C, Connolly ES, Rouleau G, Kallmes DF, Torner J, Huston J 3rd, Broderick JP (2012) Unruptured intracranial aneurysms in the Familial Intracranial Aneurysm and International Study of Unruptured Intracranial Aneurysms cohorts: differences in multiplicity and location. J Neurosurg 117(1):60–64. doi:10.3171/2012.4.JNS111822

    Article  PubMed  Google Scholar 

  73. Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21):2035–2042

    Article  CAS  PubMed  Google Scholar 

  74. Matsubara S, Hadeishi H, Suzuki A, Yasui N, Nishimura H (2004) Incidence and risk factors for the growth of unruptured cerebral aneurysms: observation using serial computerized tomography angiography. J Neurosurg 101(6):908–914. doi:10.3171/jns.2004.101.6.0908

    Article  PubMed  Google Scholar 

  75. Meng H, Metaxa E, Gao L, Liaw N, Natarajan SK, Swartz DD, Siddiqui AH, Kolega J, Mocco J (2011) Progressive aneurysm development following hemodynamic insult. J Neurosurg 114(4):1095–1103. doi:10.3171/2010.9.JNS10368

    Article  PubMed  Google Scholar 

  76. Millan RD, Dempere-Marco L, Pozo JM, Cebral JR, Frangi AF (2007) Morphological characterization of intracranial aneurysms using 3-D moment invariants. IEEE Trans Med Imaging 26(9):1270–1282. doi:10.1109/TMI.2007.901008

    Article  CAS  PubMed  Google Scholar 

  77. Morawietz H, Talanow R, Szibor M, Rueckschloss U, Schubert A, Bartling B, Darmer D, Holtz J (2000) Regulation of the endothelin system by shear stress in human endothelial cells. J Physiol 525(Pt 3):761–770

    Article  CAS  PubMed  Google Scholar 

  78. Mut F, Aubry R, Lohner R, Cebral JR (2010) Fast numerical solutions of patient-specific blood flows in 3D arterial systems. Int J Numer Methods Biomed Eng 26(1):73–85. doi:10.1002/cnm.1235

    Article  Google Scholar 

  79. Naggara ON, Lecler A, Oppenheim C, Meder JF, Raymond J (2012) Endovascular treatment of intracranial unruptured aneurysms: a systematic review of the literature on safety with emphasis on subgroup analyses. Radiology 263(3):828–835. doi:10.1148/radiol.12112114

    Article  PubMed  Google Scholar 

  80. Nieuwkamp DJ, Setz LE, Algra A, Linn FH, de Rooij NK, Rinkel GJ (2009) Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol 8(7):635–642. doi:10.1016/S1474-4422(09)70126-7

    Article  PubMed  Google Scholar 

  81. Nixon AM, Gunel M, Sumpio BE (2010) The critical role of hemodynamics in the development of cerebral vascular disease. J Neurosurg 112(6):1240–1253. doi:10.3171/2009.10.JNS09759

    Article  PubMed  Google Scholar 

  82. Nuki Y, Matsumoto MM, Tsang E, Young WL, van Rooijen N, Kurihara C, Hashimoto T (2009) Roles of macrophages in flow-induced outward vascular remodeling. J Cereb Blood Flow Metab 29(3):495–503. doi:10.1038/jcbfm.2008.136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Passerini T, Sangalli LM, Vantini S, Piccinelli M, Bacigaluppi S, Antiga L, Boccardi E, Secchi P, Veneziani A (2012) An integrated statistical investigation of internal carotid arteries of patients affected by cerebral aneurysms. Cardiovasc Eng Technol 3(1):26–40. doi:10.1007/s13239-011-079

    Article  Google Scholar 

  84. Peltier J, Vinchon M, Soto-Ares G, Dhellemmes P (2008) Disappearance of a middle cerebral artery aneurysm associated with Moyamoya syndrome after revascularization in a child: case report. Childs Nerv Syst 24(12):1483–1487. doi:10.1007/s00381-008-0670-0

    Article  PubMed  Google Scholar 

  85. Perneczky A, Boecher-Schwarz HG (1998) Endoscope-assisted microsurgery for cerebral aneurysms. Neurol Med Chir (Tokyo) 38(Suppl):33–34

    Article  Google Scholar 

  86. Piccinelli M, Bacigaluppi S, Boccardi E, Ene-Iordache B, Remuzzi A, Veneziani A, Antiga L (2011) Geometry of the internal carotid artery and recurrent patterns in location, orientation, and rupture status of lateral aneurysms: an image-based computational study. Neurosurgery 68(5):1270–1285. doi:10.1227/NEU.0b013e31820b5242, discussion 1285

    PubMed  Google Scholar 

  87. Piccinelli M, Steinman DA, Hoi Y, Tong F, Veneziani A, Antiga L (2012) Automatic neck plane detection and 3D geometric characterization of aneurysmal sacs. Ann Biomed Eng. doi:10.1007/s10439-012-0577-5

    PubMed  Google Scholar 

  88. Qureshi AI, Suri MF, Nasar A, Kirmani JF, Divani AA, He W, Hopkins LN (2005) Trends in hospitalization and mortality for subarachnoid hemorrhage and unruptured aneurysms in the United States. Neurosurgery 57(1):1–8, discussion 1–8

    Article  PubMed  Google Scholar 

  89. Raaymakers TW, Rinkel GJ, Limburg M, Algra A (1998) Mortality and morbidity of surgery for unruptured intracranial aneurysms: a meta-analysis. Stroke 29(8):1531–1538

    Article  CAS  PubMed  Google Scholar 

  90. Raghavan ML, Ma B, Harbaugh RE (2005) Quantified aneurysm shape and rupture risk. J Neurosurg 102(2):355–362. doi:10.3171/jns.2005.102.2.0355

    Article  PubMed  Google Scholar 

  91. Rahman M, Smietana J, Hauck E, Hoh B, Hopkins N, Siddiqui A, Levy EI, Meng H, Mocco J (2010) Size ratio correlates with intracranial aneurysm rupture status: a prospective study. Stroke 41(5):916–920. doi:10.1161/STROKEAHA.109.574244

    Article  PubMed  Google Scholar 

  92. Rasing I, Nieuwkamp DJ, Algra A, Rinkel GJ (2012) Additional risk of hypertension and smoking for aneurysms in people with a family history of subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 83(5):541–542. doi:10.1136/jnnp-2011-301147

    Article  PubMed  Google Scholar 

  93. Raymond J, Darsaut TE, Kotowski M, Bojanowski MW (2011) Unruptured intracranial aneurysms: why clinicians should not resort to epidemiologic studies to justify interventions. AJNR Am J Neuroradiol 32(9):1568–1569. doi:10.3174/ajnr.A2764

    Article  CAS  PubMed  Google Scholar 

  94. Raymond J, Guilbert F, Weill A, Georganos SA, Juravsky L, Lambert A, Lamoureux J, Chagnon M, Roy D (2003) Long-term angiographic recurrences after selective endovascular treatment of aneurysms with detachable coils. Stroke 34(6):1398–1403. doi:10.1161/01.STR.0000073841.88563.E9

    Article  PubMed  Google Scholar 

  95. Rayz VL, Boussel L, Lawton MT, Acevedo-Bolton G, Ge L, Young WL, Higashida RT, Saloner D (2008) Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation. Ann Biomed Eng 36(11):1793–1804. doi:10.1007/s10439-008-9561-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Regalado E, Medrek S, Tran-Fadulu V, Guo DC, Pannu H, Golabbakhsh H, Smart S, Chen JH, Shete S, Kim DH, Stern R, Braverman AC, Milewicz DM (2011) Autosomal dominant inheritance of a predisposition to thoracic aortic aneurysms and dissections and intracranial saccular aneurysms. Am J Med Genet A 155A(9):2125–2130. doi:10.1002/ajmg.a.34050

    Article  PubMed  Google Scholar 

  97. Remuzzi A, Dewey CF Jr, Davies PF, Gimbrone MA Jr (1984) Orientation of endothelial cells in shear fields in vitro. Biorheology 21(4):617–630

    CAS  PubMed  Google Scholar 

  98. Rhoton AL Jr (2002) Aneurysms. Neurosurgery 51(4 Suppl):S121–S158

    PubMed  Google Scholar 

  99. Rinkel GJ (2008) Natural history, epidemiology and screening of unruptured intracranial aneurysms. J Neuroradiol 35(2):99–103. doi:10.1016/j.neurad.2007.11.004

    Article  CAS  PubMed  Google Scholar 

  100. Roach MR, Scott S, Ferguson GG (1972) The hemodynamic importance of the geometry of bifurcations in the circle of Willis (glass model studies). Stroke 3(3):255–267

    Article  CAS  PubMed  Google Scholar 

  101. Ronkainen A, Hernesniemi J, Tromp G (1995) Special features of familial intracranial aneurysms: report of 215 familial aneurysms. Neurosurgery 37(1):43–46, discussion 46–47

    Article  CAS  PubMed  Google Scholar 

  102. Sato K, Imai Y, Ishikawa T, Matsuki N, Yamaguchi T (2008) The importance of parent artery geometry in intra-aneurysmal hemodynamics. Med Eng Phys 30(6):774–782

    Article  PubMed  Google Scholar 

  103. Scanarini M, Mingrino S, Giordano R, Baroni A (1978) Histological and ultrastructural study of intracranial saccular aneurysmal wall. Acta Neurochir (Wien) 43(3–4):171–182

    Article  CAS  Google Scholar 

  104. Schievink WI (2004) Cerebrovascular involvement in Ehlers-Danlos syndrome. Curr Treat Options Cardiovasc Med 6(3):231–236

    Article  PubMed  Google Scholar 

  105. Schievink WI, Limburg M, Oorthuys JW, Fleury P, Pope FM (1990) Cerebrovascular disease in Ehlers-Danlos syndrome type IV. Stroke 21(4):626–632

    Article  CAS  PubMed  Google Scholar 

  106. Schievink WI, Schaid DJ, Michels VV, Piepgras DG (1995) Familial aneurysmal subarachnoid hemorrhage: a community-based study. J Neurosurg 83(3):426–429. doi:10.3171/jns.1995.83.3.0426

    Article  CAS  PubMed  Google Scholar 

  107. Schlote W, Gaus C (1994) Histologic aspects from ruptured and nonruptured aneurysms. Neurol Res 16(1):59–62

    CAS  PubMed  Google Scholar 

  108. Shojima M, Oshima M, Takagi K, Torii R, Hayakawa M, Katada K, Morita A, Kirino T (2004) Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35(11):2500–2505. doi:10.1161/01.STR.0000144648.89172.0f

    Article  PubMed  Google Scholar 

  109. Shyu KG (2009) Cellular and molecular effects of mechanical stretch on vascular cells and cardiac myocytes. Clin Sci (Lond) 116(5):377–389. doi:10.1042/CS20080163

    Article  CAS  Google Scholar 

  110. Singh PK, Marzo A, Coley SC, Berti G, Bijlenga P, Lawford PV, Villa-Uriol MC, Rufenacht DA, McCormack KM, Frangi A, Patel UJ, Hose DR (2009) The role of computational fluid dynamics in the management of unruptured intracranial aneurysms: a clinicians' view. Comput Intell Neurosci:760364. doi:10.1155/2009/760364

  111. Soucy KG, Ryoo S, Benjo A, Lim HK, Gupta G, Sohi JS, Elser J, Aon MA, Nyhan D, Shoukas AA, Berkowitz DE (2006) Impaired shear stress-induced nitric oxide production through decreased NOS phosphorylation contributes to age-related vascular stiffness. J Appl Physiol 101(6):1751–1759

    Article  CAS  PubMed  Google Scholar 

  112. Stehbens WE (1989) Etiology of intracranial berry aneurysms. J Neurosurg 70(6):823–831. doi:10.3171/jns.1989.70.6.0823

    Article  CAS  PubMed  Google Scholar 

  113. Steiger HJ (1990) Pathophysiology of development and rupture of cerebral aneurysms. Acta Neurochir Suppl (Wien) 48:1–57

    CAS  Google Scholar 

  114. Steiger HJ, Poll A, Liepsch D, Reulen HJ (1987) Basic flow structure in saccular aneurysms: a flow visualization study. Heart Vessels 3(2):55–65

    Article  CAS  PubMed  Google Scholar 

  115. Steinman DA (2002) Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann Biomed Eng 30(4):483–497

    Article  PubMed  Google Scholar 

  116. Steinman DA (2004) Image-based computational fluid dynamics: a new paradigm for monitoring hemodynamics and atherosclerosis. Curr Drug Targets Cardiovasc Haematol Disord 4(2):183–197

    Article  CAS  PubMed  Google Scholar 

  117. Steinman DA, Milner JS, Norley CJ, Lownie SP, Holdsworth DW (2003) Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am J Neuroradiol 24(4):559–566

    PubMed  Google Scholar 

  118. Streefkerk HJ, Wolfs JF, Sorteberg W, Sorteberg AG, Tulleken CA (2004) The ELANA technique: constructing a high flow bypass using a non-occlusive anastomosis on the ICA and a conventional anastomosis on the SCA in the treatment of a fusiform giant basilar trunk aneurysm. Acta Neurochir (Wien) 146(9):1009–1019. doi:10.1007/s00701-004-0296-2, discussion 1019

    Article  CAS  Google Scholar 

  119. Szymanski MP, Metaxa E, Meng H, Kolega J (2008) Endothelial cell layer subjected to impinging flow mimicking the apex of an arterial bifurcation. Ann Biomed Eng 36(10):1681–1689. doi:10.1007/s10439-008-9540-x

    Article  PubMed Central  PubMed  Google Scholar 

  120. Takahashi T (2002) The treatment of symptomatic unruptured aneurysms. Acta Neurochir Suppl 82:17–19

    CAS  PubMed  Google Scholar 

  121. Tamura T, Jamous MA, Kitazato KT, Yagi K, Tada Y, Uno M, Nagahiro S (2009) Endothelial damage due to impaired nitric oxide bioavailability triggers cerebral aneurysm formation in female rats. J Hypertens 27(6):1284–1292. doi:10.1097/HJH.0b013e328329d1a7

    Article  CAS  PubMed  Google Scholar 

  122. Tan IY, Agid RF, Willinsky RA (2011) Recanalization rates after endovascular coil embolization in a cohort of matched ruptured and unruptured cerebral aneurysms. Interv Neuroradiol 17(1):27–35

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Taylor CA, Humphrey JD (2009) Open problems in computational vascular biomechanics: hemodynamics and arterial wall mechanics. Comput Methods Appl Mech Eng 198(45–46):3514–3523. doi:10.1016/j.cma.2009.02.004

    Article  PubMed Central  PubMed  Google Scholar 

  124. Teunissen LL, Rinkel GJ, Algra A, van Gijn J (1996) Risk factors for subarachnoid hemorrhage: a systematic review. Stroke 27(3):544–549

    Article  CAS  PubMed  Google Scholar 

  125. Toda M, Yamamoto K, Shimizu N, Obi S, Kumagaya S, Igarashi T, Kamiya A, Ando J (2008) Differential gene responses in endothelial cells exposed to a combination of shear stress and cyclic stretch. J Biotechnology 133(2):239–244

    Article  CAS  Google Scholar 

  126. Tremmel M, Dhar S, Levy EI, Mocco J, Meng H (2009) Influence of intracranial aneurysm-to-parent vessel size ratio on hemodynamics and implication for rupture: results from a virtual experimental study. Neurosurgery 64(4):622–630. doi:10.1227/01.NEU.0000341529.11231.69, discussion 630–621

    Article  PubMed Central  PubMed  Google Scholar 

  127. Tulamo R, Frosen J, Hernesniemi J, Niemela M (2010) Inflammatory changes in the aneurysm wall: a review. J Neurointerv Surg 2(2):120–130. doi:10.1136/jnis.2009.002055

    Article  PubMed  Google Scholar 

  128. Turner CL, Tebbs S, Smielewski P, Kirkpatrick PJ (2001) The influence of hemodynamic stress factors on intracranial aneurysm formation. J Neurosurg 95(5):764–770. doi:10.3171/jns.2001.95.5.0764

    Article  CAS  PubMed  Google Scholar 

  129. Ujiie H, Tachibana H, Hiramatsu O, Hazel AL, Matsumoto T, Ogasawara Y, Nakajima H, Hori T, Takakura K, Kajiya F (1999) Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms. Neurosurgery 45(1):119–129, discussion 129–130

    Article  CAS  PubMed  Google Scholar 

  130. Ujiie H, Tamano Y, Sasaki K, Hori T (2001) Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm? Neurosurgery 48(3):495–502, discussion 502–493

    Article  CAS  PubMed  Google Scholar 

  131. van den Berg JS, Limburg M, Hennekam RC (1996) Is Marfan syndrome associated with symptomatic intracranial aneurysms? Stroke 27(1):10–12

    Article  PubMed  Google Scholar 

  132. Wang Z, Kolega J, Hoi Y, Gao L, Swartz DD, Levy EI, Mocco J, Meng H (2009) Molecular alterations associated with aneurysmal remodeling are localized in the high hemodynamic stress region of a created carotid bifurcation. Neurosurgery 65(1):169–177. doi:10.1227/01.NEU.0000343541.85713.01, discussion 177–168

    Article  PubMed Central  PubMed  Google Scholar 

  133. Wardlaw JM, White PM (2000) The detection and management of unruptured intracranial aneurysms. Brain 123(Pt 2):205–221

    Article  PubMed  Google Scholar 

  134. Wei H, Mao Q, Liu L, Xu Y, Chen J, Jiang R, Yin L, Fan Y, Chopp M, Dong J, Zhang J (2011) Changes and function of circulating endothelial progenitor cells in patients with cerebral aneurysm. J Neurosci Res 89(11):1822–1828. doi:10.1002/jnr.22696

    Article  CAS  PubMed  Google Scholar 

  135. Weir B (1992) Pituitary tumors and aneurysms: case report and review of the literature. Neurosurgery 30(4):585–591

    Article  CAS  PubMed  Google Scholar 

  136. Weir B (2002) Unruptured intracranial aneurysms: a review. J Neurosurg 96(1):3–42. doi:10.3171/jns.2002.96.1.0003

    Article  PubMed  Google Scholar 

  137. Weir B (2005) Patients with small, asymptomatic, unruptured intracranial aneurysms and no history of subarachnoid hemorrhage should be treated conservatively: against. Stroke; J Cereb Circ 36(2):410–411. doi:10.1161/01.STR.0000152272.34969.80

  138. Weir B, Amidei C, Kongable G, Findlay JM, Kassell NF, Kelly J, Dai L, Karrison TG (2003) The aspect ratio (dome/neck) of ruptured and unruptured aneurysms. J Neurosurg 99(3):447–451. doi:10.3171/jns.2003.99.3.0447

    Article  PubMed  Google Scholar 

  139. Wiebers DO, Whisnant JP, Huston J 3rd, Meissner I, Brown RD Jr, Piepgras DG, Forbes GS, Thielen K, Nichols D, O'Fallon WM, Peacock J, Jaeger L, Kassell NF, Kongable-Beckman GL, Torner JC (2003) Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362(9378):103–110

    Article  PubMed  Google Scholar 

  140. Wiebers DO, Whisnant JP, Sundt TM Jr, O'Fallon WM (1987) The significance of unruptured intracranial saccular aneurysms. J Neurosurg 66(1):23–29. doi:10.3171/jns.1987.66.1.0023

    Article  CAS  PubMed  Google Scholar 

  141. Wilkinson IM (1972) The vertebral artery. Extracranial and intracranial structure. Arch Neurol 27(5):392–396

    Article  CAS  PubMed  Google Scholar 

  142. Wille SO (1984) Numerical simulations of steady flow inside a three dimensional aortic bifurcation model. J Biomed Eng 6(1):49–55

    Article  CAS  PubMed  Google Scholar 

  143. Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, Siddiqui AH, Levy EI, Meng H (2011) Hemodynamic–morphologic discriminants for intracranial aneurysm rupture. Stroke 42(1):144–152. doi:10.1161/STROKEAHA.110.592923

    Article  PubMed Central  PubMed  Google Scholar 

  144. Xu HW, Yu SQ, Mei CL, Li MH (2011) Screening for intracranial aneurysm in 355 patients with autosomal-dominant polycystic kidney disease. Stroke 42(1):204–206. doi:10.1161/STROKEAHA.110.578740

    Article  CAS  PubMed  Google Scholar 

  145. Xu Y, Tian Y, Wei HJ, Chen J, Dong JF, Zacharek A, Zhang JN (2011) Erythropoietin increases circulating endothelial progenitor cells and reduces the formation and progression of cerebral aneurysm in rats. Neuroscience 181:292–299. doi:10.1016/j.neuroscience.2011.02.051

    Article  CAS  PubMed  Google Scholar 

  146. Yasui N, Magarisawa S, Suzuki A, Nishimura H, Okudera T, Abe T (1996) Subarachnoid hemorrhage caused by previously diagnosed, previously unruptured intracranial aneurysms: a retrospective analysis of 25 cases. Neurosurgery 39(6):1096–1100, discussion 1100–1091

    Article  CAS  PubMed  Google Scholar 

  147. Yonekura M (2002) Importance of prospective studies for deciding on a therapeutic guideline for unruptured cerebral aneurysm. Acta Neurochir Suppl 82:21–25

    CAS  PubMed  Google Scholar 

  148. Zacharia BE, Ducruet AF, Hickman ZL, Grobelny BT, Badjatia N, Mayer SA, Berman MF, Solomon RA, Connolly ES Jr (2011) Technological advances in the management of unruptured intracranial aneurysms fail to improve outcome in New York state. Stroke 42(10):2844–2849. doi:10.1161/STROKEAHA.111.619767

    Article  PubMed  Google Scholar 

  149. Zeng Z, Kallmes DF, Durka MJ, Ding Y, Lewis D, Kadirvel R, Robertson AM (2011) Hemodynamics and anatomy of elastase-induced rabbit aneurysm models: similarity to human cerebral aneurysms? AJNR Am J Neuroradiol 32(3):595–601. doi:10.3174/ajnr.A2324

    Article  CAS  PubMed  Google Scholar 

  150. Zhang B, Fugleholm K, Day LB, Ye S, Weller RO, Day IN (2003) Molecular pathogenesis of subarachnoid haemorrhage. Int J Biochem Cell Biol 35(9):1341–1360

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Umberto Veronesi Foundation (SB). Siemens Medical Solutions supported the start of the project Aneurisk several years ago.

We acknowledge Dr. M. Bacigaluppi for critical revision of the manuscript.

In memory of Dr. M. Collice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bacigaluppi.

Additional information

Comments

Tatsuya Abe, Oita, Japan

Bacigaluppi S. et al. reviewed various factors affecting formation and rupture of intracranial saccular aneurysms, focusing on geometry, hemodynamics, and genetics as concerns vessel wall structure and inflammatory pathways.

Computational fluid dynamics (CFD) technique has the potential to be a useful clinical tool for the prediction of the initiation, growth, and rupture of cerebral aneurysms. Actually, the number of publications about CFD has been growing. The recent application of methods of data assimilation to computational hemodynamics provides a promising approach for improving the reliability and accuracy of CFD studies using clinical data. However, further continuing studies are required.

Uwe Spetzger, Karlsruhe, Germany

On one hand, the raising preventive check-ups with sophisticated MR imaging, lead to an increasing detection rate of unruptured cerebral aneurysms. On the other hand, the ongoing discussion concerning the indication for treatment of innocent aneurysms and especially the adequate treatment strategy are often emotional and polemic discussions. For a proper and precise scientific discussion we need substantiated information and more reliable facts. The simple perspective to indicate the treatment only by the size of an aneurysm is too trivial and is inconsistent to our expertise of many SAH patients with small aneurysms. For decision making we need more evidence-based statistics, but in the future the individualized and patient specific data analysis will gain more importance.

This paper of Susanna Bacigaluppi summarizes the scientific results of a multidisciplinary group of neurosurgeons, neuroradiologists, computer scientists and bioengineers on the important topic of prediction factors for aneurysms rupture. The technique of computational fluid dynamics is an important approach and meanwhile many scientific groups focus on this technique. The systematic review of various factors affecting the formation and also the rupture of saccular aneurysms is comprehensive and clearly represented. The influence of geometry and hemodynamics is a promising approach for patient specific risk estimation to predict aneurysm rupture. However, also the genetic predisposition and inflammatory factors affecting the vessel wall respectively the structural stability of the aneurysm itself are discussed. The paper is of high significance in our daily routine for neurosurgeons dealing with patients with innocent aneurysms.

Computational fluid dynamics seems to become an important tool for the prediction of aneurysm development, growth and rupture. Definitely, further studies to confirm the reliability and clinical feasibility of this method are mandatory. To look ahead, computational fluid dynamics could be beneficial in the treatment algorithm and probably facilitate the decision making for coiling or clipping of an aneurysm. Additionally, follow-up and potential risk estimation of partially coil occluded aneurysms could become possible.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacigaluppi, S., Piccinelli, M., Antiga, L. et al. Factors affecting formation and rupture of intracranial saccular aneurysms. Neurosurg Rev 37, 1–14 (2014). https://doi.org/10.1007/s10143-013-0501-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-013-0501-y

Keywords

Navigation