Skip to main content
Log in

Testis transcriptome profiling identified lncRNAs involved in spermatogenic arrest of cattleyak

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Cattleyaks are the crossbred offspring between cattle and yaks, exhibiting the prominent adaptability to the harsh environment as yaks and much higher growth performances than yaks around Qinghai-Tibet plateau. Unfortunately, cattleyak cannot be effectively used in yak breeding due to its male infertility resulted from spermatogenic arrest. In this study, we performed RNA sequencing (RNA-seq) and bioinformatics analysis to determine the expression profiles of long noncoding RNA (lncRNA) from cattleyak and yak testis. A total of 604 differentially expressed (DE) lncRNAs (135 upregulated and 469 downregulated) were identified in cattleyak with respect to yak. Through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, we identified several DE lncRNAs regulating the mitotic cell cycle processes by targeting the genes significantly associated with the mitotic cell cycle checkpoint and DNA damage checkpoint term and also significantly involved in p53 signaling pathway, mismatch repair and homologous recombination pathway (P < 0.05). The reverse transcription PCR (RT-PCR) and quantitative Real-Time PCR (qRT-PCR) analysis of the randomly selected fourteen DE lncRNAs and the seven target genes validated the RNA-seq data and their true expressions during spermatogenesis in vivo. Molecular cloning and sequencing indicated that the testis lncRNAs NONBTAT012170 and NONBTAT010258 presented higher similarity among different cattleyak and yak individuals. The downregulation of these target genes in cattleyak contributed to the abnormal DNA replication and spermatogenic arrest during the S phase of mitotic cell cycle. This study provided a novel insight into lncRNA expression profile changes associated with spermatogenic arrest of cattleyak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All analyzed data in this study are included in this published article and all RNA-seq data in this study are available in NCBI under accession numbers: PRJNA509997, PRJNA510216, PRJNA510224, PRJNA510232, PRJNA510475, and PRJNA510552.

Abbreviations

lncRNA:

Long non-coding RNA

RNA-Seq:

RNA sequencing

SSC:

Spermatogonial stem cell

DE:

Differentially expressed

QC:

Quality control

FC:

Fold change

ORF:

Open reading frame

GO:

Gene ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

CPC:

Coding Potential Calculator

CNCI:

Coding-Non-Coding-Index

CPAT:

The Coding Potential Assessment Tool

RT-PCR:

Reverse transcription Polymerase Chain Reaction

qRT-PCR:

Quantitative Real-Time PCR

FPKM:

Fragments per kilobase of transcript per million mapped reads

TMM:

Trimmed mean of M values

References

  • Anders S, Pyl PT, Huber W (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  PubMed  Google Scholar 

  • Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Billerey C, Boussaha M, Esquerre D, Rebours E, Djari A, Meersseman C, Klopp C, Gautheret D, Rocha D (2014) Identification of large intergenic non-coding RNAs in bovine muscle using next-generation transcriptomic sequencing. BMC Genomics 15

  • Caballero J, Gilbert I, Fournier E, Gagne D, Scantland S, Macaulay A, Robert C (2014) Exploring the function of long non-coding RNA in the development of bovine early embryos. Reprod Fertil Dev 27:40–52

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Yu S, Mipam T, Yang F, Zhao W, Liu W, Cao S, Shen L, Zhao F, Sun L et al (2017) Comparative analysis of testis transcriptomes associated with male infertility in cattleyak. Theriogenology 88:28–42

    Article  CAS  PubMed  Google Scholar 

  • Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    Article  CAS  PubMed  Google Scholar 

  • Cazzalini O, Sommatis S, Tillhon M, Dutto I, Bachi A, Rapp A, Nardo T, Scovassi AI, Necchi D, Cardoso MC et al (2014) CBP and p300 acetylate PCNA to link its degradation with nucleotide excision repair synthesis. Nucleic Acids Res 42:8433–8448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalmel F, Lardenois A, Evrard B, Rolland AD, Sallou O, Dumargne MC, Coiffec I, Collin O, Primig M, Jegou B (2014) High-resolution profiling of novel transcribed regions during rat spermatogenesis. Biol Reprod 91

  • Chini CC, Chen J (2003) Human claspin is required for replication checkpoint control. J Biol Chem 278:30057–30062

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szczesniak MW, Gaffney DJ, Elo LL, Zhang XG, et al. (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17

  • Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang ZH, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsik CG, Tellam RL, Worley KC, Gibbs RA, Abatepaulo ARR, Abbey CA, Adelson DL, Aerts J, Ahola V, Alexander L et al (2009) The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324:522–528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flynn RA, Chang HY (2014) Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 14:752–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han L, Zhang K, Shi Z, Zhang J, Zhu J, Zhu S, Zhang A, Jia Z, Wang G, Yu S et al (2012) LncRNA profile of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. Int J Oncol 40:2004–2012

    CAS  PubMed  Google Scholar 

  • Hu O, Zhong J, Chen Z, Cai L (2000) A study on relationship between synaptonemal complex and male sterility of cattleyak. Journal of Southwest Nationalities College 01:61–66 (in Chinese with English abstract)

    Google Scholar 

  • Jia H, Osak M, Bogu GK, Stanton LW, Johnson R, Lipovich L (2010) Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA 16:1478–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345-349

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Proc GPD (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li HH, Cai X, Shouse GP, Piluso LG, Liu X (2007) A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. EMBO J 26:402–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Li Q, Zhao X, Xu H, Gu Y, Zhu X, Xie Z, Liu H (2010) Sequence analysis and study on the expression level of Dmc1 mRNA in yak and cattleyaks testis. Scientia Agricultura Sinica 43(15):3221–3229 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Liu XF, Ding XB, Li X, Jin CF, Yue YW, Li GP, Guo H (2017) An atlas and analysis of bovine skeletal muscle long noncoding RNAs. Anim Genet 48:278–286

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Zi X (2014) The study of anatomical structure of F1 generation cattleyak testis. Animal Husbandry & Veterinary Medicine 46(12):61–63 (in Chinese with English abstract)

    Google Scholar 

  • Luk ACS, Chan WY, Rennert OM, Lee TL (2014) Long noncoding RNAs in spermatogenesis: insights from recent high-throughput transcriptome studies. Reproduction 147:R131–R141

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Zhou Y, Li YX, Li QF (2013) Splice variants and promoter methylation status of the Bovine Vasa Homology (Bvh) gene may be involved in bull spermatogenesis. BMC Genet 14

  • Ma QM, Li LY, Tang Y, Fu Q, Liu S, Hu SW, Qiao J, Chen CF, Ni W (2017) Analyses of long non-coding RNAs and mRNA profiling through RNA sequencing of MDBK cells at different stages of bovine viral diarrhea virus infection. Res Vet Sci 115:508–516

    Article  CAS  PubMed  Google Scholar 

  • Mistry J, Bateman A, Finn RD (2007) Predicting active site residue annotations in the Pfam database. BMC Bioinformatics 8:298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monda G, Ohashi A, Yang L, Rowley M, Couch FJ (2012) Tex14, a Plk1-regulated protein, is required for kinetochore-microtubule attachment and regulation of the spindle assembly checkpoint. Mol Cell 45:680–695

    Article  CAS  Google Scholar 

  • Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Petri ET, Errico A, Escobedo L, Hunt T, Basavappa R (2007) The crystal structure of human cyclin B. Cell Cycle 6:1342–1349

    Article  CAS  PubMed  Google Scholar 

  • Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    Article  CAS  PubMed  Google Scholar 

  • Qiu Q, Wang LZ, Wang K, Yang YZ, Ma T, Wang ZF, Zhang X, Ni ZQ, Hou FJ, Long RJ, et al. (2015) Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions. Nature Communications 6

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  • Roberts A, Pimentel H, Trapnell C, Pachter L (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 27:2325–2329

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Feng ZH, Zhang JQ, Gonzalez-Suarez I, Vanderwaal RP, Wu XH, Powell SN, Roti JLR, Gonzalo S, Zhang JR (2010) The role of RPA2 phosphorylation in homologous recombination in response to replication arrest. Carcinogenesis 31:994–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjodin A, Street NR, Sandberg G, Gustafsson P, Jansson S (2009) The Populus Genome Integrative Explorer (PopGenIE): a new resource for exploring the Populus genome. New Phytol 182:1013–1025

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Lin Y, Wu J (2013) Long non-coding RNA expression profiling of mouse testis during postnatal development. PLoS One 8:e75750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Zhao Y (2013) Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res 41:e166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szambowska A, Tessmer I, Kursula P, Usskilat C, Prus P, Pospiech H, Grosse F (2014) DNA binding properties of human Cdc45 suggest a function as molecular wedge for DNA unwinding. Nucleic Acids Res 42:2308–2319

    Article  CAS  PubMed  Google Scholar 

  • Tafer H, Hofacker IL (2008) RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24:2657–2663

    Article  CAS  PubMed  Google Scholar 

  • Tong C, Chen QL, Zhao LL, Ma JF, Ibeagha-Awemu EM, Zhao X (2017) Identification and characterization of long intergenic noncoding RNAs in bovine mammary glands. BMC Genomics 18

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511-U174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Park HJ, Dasari S, Wang S, Kocher JP, Li W (2013) CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res 41:e74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Pan Z, Zhang Q, Xie Z, Liu H, Li Q (2012) Differential mRNA expression and promoter methylation status of SYCP3 gene in testes of yaks and cattle-yaks. Reprod Domest Anim 47:455–462

    Article  CAS  PubMed  Google Scholar 

  • Weikard R, Hadlich F, Kuehn C (2013) Identification of novel transcripts and noncoding RNAs in bovine skin by deep next generation sequencing. BMC Genomics 14

  • White NM, Cabanski CR, Silva-Fisher JM, Dang HX, Govindan R, Maher CA (2014) Transcriptome sequencing reveals altered long intergenic non-coding RNAs in lung cancer. Genome Biol 15

  • Xu C, Wu S, Zhao W, Mipam T, Liu J, Liu W, Yi C, Shah MA, Yu S, Cai X (2018) Differentially expressed microRNAs between cattleyak and yak testis. Sci Rep 8:592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan P, Xiang L, Guo X, Bao PJ, Jin S, Wu XY (2014) The low expression of Dmrt7 is associated with spermatogenic arrest in cattle-yak. Mol Biol Rep 41:7255–7263

    Article  CAS  PubMed  Google Scholar 

  • Yarden RI, Pardo-Reoyo S, Sgagias M, Cowan KH, Brody LC (2002) BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet 30:285–289

    Article  PubMed  Google Scholar 

  • Yu B, Dalton WB, Yang VW (2012) CDK1 regulates mediator of DNA damage checkpoint 1 during mitotic DNA damage. Cancer Res 72:5448–5453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu S, Cai X, Sun L, Zuo Z, Mipam T, Cao S, Shen L, Ren Z, Chen X, Yang F et al (2016) Comparative iTRAQ proteomics revealed proteins associated with spermatogenic arrest of cattleyak. J Proteomics 142:102–113

    Article  CAS  PubMed  Google Scholar 

  • Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D, Hanrahan F, Pertea G, Van Tassell CP, Sonstegard TS, et al. (2009) A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol 10

  • Zh Y, Lu H, Li B, Ji C, Xi Z, Zh X, Zh J, LI Q, (2013) mRNA expression level and promoter methylation of DDX4 gene in testes of yak and cattle-yak. Sci Agric Sin 46(03):630–638 (in Chinese with English abstract)

    Google Scholar 

Download references

Funding

This work was supported by “the Fundamental Research Funds for the Central Universities,” Southwest Minzu University (2020NZD04); the Key Project of Sichuan Provincial Education Department (16ZA0134); and the Program of National Beef Cattle and Yak Industrial Technology System (No. CARS-37).

Author information

Authors and Affiliations

Authors

Contributions

Xin Cai, Shixin Wu, and Jincheng Zhong conceived the study; Shixin Wu, TserangDonko Mipam, Hui Luo, and Wangsheng Zhao analyzed data; Shixin Wu, Chuanfei Xu, Chuanping Yi, and Hongying Wang prepared and performed experiments under the supervision of Xin Cai; Shixin Wu wrote and revised the manuscript with the help of Hui Luo, Xin Cai, and Jincheng Zhong. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xin Cai or Jincheng Zhong.

Ethics declarations

Ethical approval

The experimental animal procedures were followed in accordance with the approved protocols of Sichuan Province, PR China, for the Biological Studies Animal Care and Use Committee, and all protocols were approved by the Institutional Review Board of Southwest Minzu University.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10142_2021_806_MOESM1_ESM.docx

Supplementary file1 (DOCX 17 KB) Table S1: Primer sequences used for RT-PCR and Q-PCR validation of the target genes for lncRNAs involved in mitotic cell cycle processes.

10142_2021_806_MOESM2_ESM.docx

Supplementary file2 (DOCX 18 KB) Table S2: Primer sequences used for RT-PCR and Q-PCR of the lncRNAs involved in mitotic cell cycle processes.

10142_2021_806_MOESM3_ESM.docx

Supplementary file3 (DOCX 17 KB) Table S3: Primer sequences used for molecular cloning of the lncRNAs NONBTAT012170 and NONBTAT010258.

10142_2021_806_MOESM4_ESM.xlsx

Supplementary file4 (XLSX 11 KB) Table S4: Sequencing statistics summary of the lncRNA library and database alignment generated by RNA-seq.

Supplementary file5 (XLSX 60 KB) Table S5: DE lncRNAs between testis transcriptome of cattleyak and yak.

Supplementary file6 (XLS 1371 KB) Table S6: Target genes of LncRNA in cis-prediction

Supplementary file7 (XLS 3421 KB) Table S7: Target genes of LncRNA in trans-prediction

10142_2021_806_MOESM8_ESM.xlsx

Supplementary file8 (XLSX 21 KB) Table S8: Summary of the significantly enriched GO items for the target genes of DE lncRNAs and the list of genes involved in each item.

Supplementary file9 (DOCX 46 KB) Table S9: Top listed Go enrichments of target genes and the corresponding lncRNAs.

10142_2021_806_MOESM10_ESM.xlsx

Supplementary file10 (XLSX 12 KB) Table S10: Summary of the significantly enriched KEGG pathways for the target genes of DE lncRNAs and the list of genes involved in each pathway.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Wu, S., Mipam, T. et al. Testis transcriptome profiling identified lncRNAs involved in spermatogenic arrest of cattleyak. Funct Integr Genomics 21, 665–678 (2021). https://doi.org/10.1007/s10142-021-00806-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-021-00806-8

Keywords

Navigation