Skip to main content

Advertisement

Log in

Transcriptomic analysis provides insights into candidate genes and molecular pathways involved in growth of Manila clam Ruditapes philippinarum

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Growth is one of the most important traits of aquaculture breeding programs. Understanding the mechanisms underlying growth differences between individuals can contribute to improving growth rates through more efficient breeding schemes. Ruditapes philippinarum is an economically important marine bivalve. In order to gain insights into the molecular mechanisms to growth variability in marine shellfish, we conducted the transcriptome sequencing and examined the expression differences in growth-related gene and molecular pathways involved in growth trait of R. philippinarum. In this study, we investigated the molecular and gene expression differences in fast-growing and slow-growing Manila clam and focused on the analysis of the differential expression patterns of specific genes associated with growth by RNA-seq and qPCR analysis. A total of 61 differentially expressed genes (DEGs) were captured significantly differentially expressed, and were categorized into Ras signaling pathway, hedgehog signaling pathway, AMPK signaling pathway, p53 signaling pathway, regulation of actin cytoskeleton, focal adhesion, mTOR signaling pathway, VEGF signaling pathway, and TGF-beta signaling pathway. A total of 34 growth-related genes were validated significantly and up/downregulated at fast growing and slow growing of R. philippinarum. Functional enrichment analysis revealed the insulin signaling pathway, PI3K-Akt signaling pathway, and mTOR signaling pathway play pivotal roles in molecular function and regulation of growth trait in R. philippinarum. The growth-related genes and pathways obtained here provide important insights into the molecular basis of physiological acclimation, metabolic activity, and growth variability in marine bivalves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The raw sequences for R. philippinarum have been deposited in the NCBI PRJNA478927 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA478927). The RNA-seq datasets are available in the NCBI Sequence Read Archive (SRA) with the accession numbers SRP151797.

Abbreviations

DEGs:

differentially expressed genes

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes pathways

KOG:

eukaryotic orthologous groups

qPCR:

quantitative real-time PCR

ATP:

adenosine-5′-triphosphate

COG:

Clusters of Orthologous Groups

pp1c:

serine/threonine-protein phosphatase PP1 catalytic subunit

megf:

multiple epidermal growth factor

igf:

insulin-like growth factor

en:

homeobox protein engrailed

tuba:

tubulin alpha

mitf:

microphthalmia-associated transcription factor

tagln3:

transgelin-like protein-3

fbn2:

fibrillin-2-like

degs:

sphingolipid 4-desaturase/C4-monooxygenase

mstn:

myostatin

Eps15l1:

epidermal growth factor receptor substrate 15-like 1

aoc1\abp1:

diamine oxidase

myosin:

myosin II heavy chain

tst\mpst\ssea:

thiosulfate/3-mercaptopyruvate sulfurtransferase

ppif:

peptidyl-prolyl isomerase F

alpha-amylase:

alpha-amylase

eef2k:

elongation factor 2 kinase

hspb1:

heat shock protein beta-1

hspa1s:

heat shock 70kDa protein 1

ltbp1:

latent-transforming growth factor beta-binding protein 1

tgfb1:

transforming growth factor beta-1

notch1:

notch 1

thbs1:

thrombospondin 1

erk\mapk1\3:

mitogen-activated protein kinase 1/3

flna:

filamin

smad2:

mothers against decapentaplegic homolog 2

smad-binding:

SMAD binding

madhip\sara:

MAD, mothers against decapentaplegic interacting protein

5hspa5\bip:

heat shock 70kDa protein

pla1a:

phospholipase A1 member A

gas1:

growth arrest-specific 1

wnt1:

WNT inhibitory factor 1

References

  • Alejo-Jacuinde G, González-Morales SI, Oropeza-Aburto A, Simpson J, Herrera-Estrella L (2020) Comparative transcriptome analysis suggests convergent evolution of desiccation tolerance in Selaginella species. BMC Plant Biol 20:468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106. https://doi.org/10.1186/gb-2010-11-10-r106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appels R, Barrero R, Bellgard M (2013) Advances in biotechnology and informatics to link variation in the genome to phenotypes in plants and animals. Funct Integr Genomics 13:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balaban RS (1990) Regulation of oxidative phosphorylation in the mammalian cell. Am J Physiol 258(3):377–389

    Article  Google Scholar 

  • Bayne BL (2000) Relations between variable rates of growth, metabolic costs and growth efficiencies in individual Sydney rock oysters (Saccostrea commercialis). J Exp Mar Biol Ecol 251:185–203

    Article  CAS  PubMed  Google Scholar 

  • Bayne BL (2004) Phenotypic flexibility and physiological tradeoffs in the feeding and growth of marine bivalve molluscs. Integr Comp Biol 44:425–432

    Article  PubMed  Google Scholar 

  • Carruthers M, Yurchenko AA, Augley JJ, Adams CE, Herzyk P, Elmer KR (2018) De novo transcriptome assembly, annotation and comparison of four ecological and evolutionary model salmonid fish species. BMC Genomics 19:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cong R, Li Q, Kong L (2013) Polymorphism in the insulin-related peptide gene and its association with growth traits in the Pacific oyster Crassostrea gigas. Biochem Syst Ecol 46:36–43

    Article  CAS  Google Scholar 

  • Cooper GM, Sunderland MA (2000) The cell: a molecular approach, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Evans S, Langdon C (2006) Direct and indirect responses to selection on individual body weight in the Pacific oyster (Crassostrea gigas). Aquaculture 261(2):546–555

    Article  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652.

  • Grimaldi A, Tettamanti G, Acquati F (2008) A hedgehog homolog is involved in muscle formation and organization of Sepia officinalis (mollusca) mantle. Dev Dyn 237:659–671

    Article  PubMed  Google Scholar 

  • Guan Y, He M, Wu H (2017) Differential mantle transcriptomics and characterization of growth-related genes in the diploid and triploid pearl oyster Pinctada fucata. Mar Genomics 33:31–38

    Article  PubMed  Google Scholar 

  • Guo L, Li L, Zhang S, Guo X, Zhang G (2011) Novel polymorphisms in the myostatin gene and their association with growth traits in a variety of bay scallop, Argopecten irradians. Anim Genet 42:339–340

    Article  CAS  PubMed  Google Scholar 

  • Heretsch P, Tzagkaroulaki L, Giannis A (2010) Modulators of he hedgehog signaling pathway. Bioorg Med Chem 18:6613–6624

    Article  CAS  PubMed  Google Scholar 

  • Huvet A, Jeffroy F, Fabioux C, Daniel JY, Quillien V, Van Wormhoudt A, Moal J, Samain JF, Boudry P, Pouvreau S (2008) Association among growth, food consumption-related traits and amylase gene polymorphism in the Pacific oyster Crassostrea gigas. Anim Genet 39:662–665

    Article  CAS  PubMed  Google Scholar 

  • Jiang K, Nie H, Li D, Yan X (2020) New insights into the Manila clam and PAMPs interaction based on RNA-seq analysis of clam through in vitro challenges with LPS, PGN, and poly(I:C). BMC Genomics 21(1):531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang D, Huang F, Li D, Shankland M, Gaffield W, Weisblat DA (2003) A hedgehog homolog regulates gut formation in leech Helobdella. Development 130:1645–1657

    Article  CAS  PubMed  Google Scholar 

  • Levy C, Khaled M, Fisher DE (2006) MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 12(9):406–414

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li Q, Yu H (2018) Molecular characterization of the hedgehog signaling pathway and its necessary function on larval myogenesis in the Pacific oyster Crassostrea gigas. Front Physiol 9:1536

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Yang C, Huang L, Zeng K, Cao X, Gao J (2019) Inefficient ATP synthesis by inhibiting mitochondrial respiration causes lipids to decrease in MSTN-lacking muscles of loach Misgurnus anguillicaudatus. Funct Integr Genomics 19:889–900

    Article  CAS  PubMed  Google Scholar 

  • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milan M, Coppe A, Reinhardt R, Cancela LM, Leite RB, Saavedra C, Ciofi C, Chelazzi G, Patarnello T, Bortoluzzi S, Bargelloni L (2011) Transcriptome sequencing and microarray development for the Manila clam, Ruditapes philippinarum: genomic tools for environmental monitoring. BMC Genomics 12(1):234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie H, Jiang L, Huo Z, Liu L, Yang F, Yan X (2016) Transcriptomic responses to low temperature stress in the Manila clam, Ruditapes philippinarum. Fish Shellfish Immunol 55:358–366

    Article  CAS  PubMed  Google Scholar 

  • Nie HT, Yan XW, Huo ZM, Jiang LW, Chen P, Liu H, Ding JF, Yang F (2017a) Construction of a high-density genetic map and quantitative trait locus mapping in the Manila clam Ruditapes philippinarum. Sci Rep 7:229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nie H, Jiang L, Chen P, Huo Z, Yang F, Yan X (2017b) High throughput sequencing of RNA transcriptomes in Ruditapes philippinarum identifies genes involved in osmotic stress response. Sci Rep 7(1):4953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nie H, Jahan K, Zhang W, Huo Z, Yan X (2020a) Physiological and biochemical responses of different shell color strains of Manila clam to low salinity challenges. Aquacult Rep 16:100260

    Article  Google Scholar 

  • Nie H, Jiang K, Li N, Li D, Yan X (2020b) Transcriptomic analysis of Ruditapes philippinarum under aerial exposure and re-immersion reveals genes involved in stress response and recovery capacity of the Manila clam. Aquaculture 524:735271

    Article  CAS  Google Scholar 

  • Nie H, Wang H, Jiang K, Yan X (2020c) Transcriptome analysis reveals differential immune related genes expression in Ruditapes philippinarum under hypoxia stress: potential HIF and NF-κB crosstalk in immune responses in clam. BMC Genomics 21(1):318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pace DA, Marsh AG, Leong PK, Green AJ, Hedgecock D, Manahan DT (2006) Physiological bases of genetically determined variations in growth of marine invertebrate larvae: a study of growth heterosis in the bivalve Crassostrea gigas. J Exp Mar Biol Ecol 335:188–209

    Article  Google Scholar 

  • Pernet F, Tremblay R, Redjah I, Sévigny JM, Gionet C (2008) Physiological and biochemical traits correlate with differences in growth rate and temperature adaptation among groups of the eastern oyster Crassostrea virginica. J Exp Biol 211:969–977

    Article  PubMed  Google Scholar 

  • Polimeno L, Capuano F, Marangi LC, Margiotta M, Lisowsky T, Ierardi E, Francavilla R, Francavilla A (2000a) The augmenter of liver regeneration induces mitochondrial gene expression in rat liver and enhances oxidative phosphorylation capacity of liver mitochondria. Dig Liver Dis 2:510–517

    Article  Google Scholar 

  • Polimeno L, Margiotta M, Marangi L, Lisowsky T, Azzarone A, Ierardi E, Frassanito MA, Francavilla R, Francavilla A (2000b) Molecular mechanism of augmenter of liver regeneration as immunoregulator: its effect on interferon-y expression in rat liver. Dig Liver Dis 32:217–225

    Article  CAS  PubMed  Google Scholar 

  • Preston C, Oberlin A, Holmuhamedov E, Gupta A, Sagar S, Siddiqui S, Raghavakaimal S, Terzic A, Jahangir A (2008) Aging-induced alterations in gene transcripts and functional activity of mitochondrial oxidative phosphorylation complexes in the heart. Mech Ageing Dev 129(6):304–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prudence M, Moal J, Boudry P, Daniel JY, Quere C, Jeffroy F, Mingant C, Ropert M, Bedier E, VanWormhoudt A, Samain JF, Huvet A (2006) An amylase gene polymorphism is associated with growth differences in the Pacific cupped oyster Crassostrea gigas. Anim Genet 37:348–351

    Article  CAS  PubMed  Google Scholar 

  • Saary P, Mitchell AL, Finn RD (2020) Estimating the quality of eukaryotic genomes recovered from metagenomic analysis with EukCC. Genome Biol 21:244

    Article  PubMed  PubMed Central  Google Scholar 

  • Saha M, Mitsuhashi S, Jones MD, Manko K, Reddy HM, Bruels C, Cho KA, Pacak CA, Draper I, Kang PB (2017) Consequences of MEGF10 deficiency on myoblast function and Notch1 interactions. Hum Mol Genet 26:2984–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Seo HC, Edvardsen RB, Maeland AD, Bjordal M, Jensen MF, Hanssen A, Flaat M, Weissenbach J, Lehrach H, Wincker P, Reinhardt R, Chourroutt D (2004) Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature 413:67–71

    Article  CAS  Google Scholar 

  • Seppey M, Manni M, Zdobnov EM (2019) BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol 1962:227–245

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, He M (2014) Differential gene expression identified by RNA-Seq and qPCR in two sizes of pearl oyster (Pinctada fucata). Gene 538:313–322

    Article  CAS  PubMed  Google Scholar 

  • Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 31:3210–3212

    Article  PubMed  CAS  Google Scholar 

  • Tamayo D, Ibarrola I, Urrutia MB, Navarro E (2011) The physiological basis for inter-individual growth variability in the spat of clams (Ruditapes philippinarum). Aquaculture 321:113–120

    Article  Google Scholar 

  • Tamayo D, Ibarrola I, Urrutxurtu I, Navarro E (2014a) Physiological basis of extreme growth rate differences in the spat of oyster (Crassostrea gigas). Mar Biol 161(7):1627–1637

    Article  Google Scholar 

  • Tamayo D, Ibarrola I, Urrutxurtu I, Navarro E (2014b) Physiological basis of extreme growth rate differences in the spat of oyster (Crassostrea gigas). Mar Biol 161(7):1627–1637

    Article  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Meng X, Song B, Qiu X, Liu H (2010a) SNPs in the myostatin gene of the mollusk Chlamys farreri: association with growth traits. Comp Biochem Physiol B Biochem Mol Biol 155:327–330

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010b) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Teng W, Sun X, Liang M, Du S, Zhu S, Liu X, Nie H, Wang Q (2020) Transcriptomic analysis of the ark shell Scapharca kagoshimensis: de novo assembly and identification of genes and pathways involved growth. Aquacult Rep 18:100522

    Article  Google Scholar 

  • Xing L, Sun L, Liu S, Wan Z, Li X, Miao T, Zhang L, Bai Y, Yang H (2018) Growth, histology, ultrastructure and expression of MITF and astacin in the pigmentation stages of green, white and purple morphs of the sea cucumber, Apostichopus japonicus. Aquac Res 49(1):177–187

    Article  CAS  Google Scholar 

  • Yan X, Nie H, Huo Z, Ding J, Li Z, Yan L, Jiang L, Mu Z, Wang H, Meng X, Chen P, Zhou M, Rbbani MG, Liu G, Li D (2019) Clam genome sequence clarifies the molecular basis of its benthic adaptation and extraordinary shell color diversity. Iscience 8:10–29

    Google Scholar 

  • Zhang L, He M (2011) Quantitative expression of shell matrix protein genes and their correlations with shell traits in the pearl oyster Pinctada fucata. Aquaculture 314:73–79

    Article  CAS  Google Scholar 

  • Zhang S, Yue X, Jiang F, Wang H, Liu B (2017) Identification of an, MITF, gene and its polymorphisms associated with the, Vibrio, resistance trait in the clam, Meretrix petechialis. Fish Shellfish Immunol 68:466–473

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Chinese Ministry of Science and Technology through the National Key Research and Development Program of China (2018YFD0901400), the Modern Agro-industry Technology Research System (CARS-49), the Scientific Research Project of Liaoning Education Department (QL201703), and the Dalian high-level talent innovation support program (Dalian Youth Science and Technology Star Project Support Program) (2016RQ065). The project is sponsored by “Liaoning BaiQianWan Talents Program”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Nie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Fig. S1

Sequence length distribution of transcripts and unigenes assembled from Illumina reads of the transcriptome of Ruditapes philippinarum. The x-axis indicates the lengths of the transcripts and unigenes, and the y-axis indicates the number of transcripts and unigenes in each size category. (PDF 4 kb)

Fig. S2

The BUSCO assessment result. (PNG 90 kb)

Fig. S3

The unigenes annotated in different database. (PNG 17 kb)

Fig. S4

Species distribution of sequences matched to the Nr database. (PNG 26 kb)

Fig. S5

GO (Gene Ontology) categorization (biological process, cellular component, and molecular function) of the unigenes in the gill transcriptome of R. philippinarum. Each annotated sequence is assigned at least one GO term. (PNG 356 kb)

Fig. S6

KOG (euKaryotic Ortholog Groups) classifications of putative proteins in the gill transcriptome of R. philippinarum. (PNG 54 kb)

ESM 1

(DOCX 18 kb)

ESM 2

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, H., Zheng, M., Wang, Z. et al. Transcriptomic analysis provides insights into candidate genes and molecular pathways involved in growth of Manila clam Ruditapes philippinarum. Funct Integr Genomics 21, 341–353 (2021). https://doi.org/10.1007/s10142-021-00780-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-021-00780-1

Keywords

Navigation