Skip to main content
Log in

Double-stranded RNA in the biological control of grain aphid (Sitobion avenae F.)

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Grain aphid (Sitobion avenae F.) is the most dominant and destructive pest of wheat, which causes significant yield loss of cereal plants each year by inflicting damage both through the direct effects of feeding and by vectoring debilitating plant viruses. In this study, we performed de novo transcriptome sequencing of grain aphid via Roche 454 GS-FLX pyrosequencing. A total of 1,106,696 reads were obtained and assembled into 32,277 unigenes, of which 25,389, 21,635, and 16,211 unigenes matched the Nt, Nr, and Swiss-Prot databases, respectively. Functional annotation of these unigenes revealed not only the presence of genes that encode the key components of RNAi machinery such as Dicer and Argonaute but also the genes encoding the TAR RNA binding protein (TRBP) and the SID-1 protein, which function in assisting the RNA-induced silencing complex (RISC) formation in microRNA (miRNA) pathway and mediating a systemic RNA interference (RNAi) effect though a cellular uptake mechanism. Furthermore, among a set of 66 unigenes selected for a double-stranded RNA (dsRNA) artificial diet assay, four novel effective RNAi targets, which led to high mortality of aphids due to the down-regulation of the expression of the respective target gene, were identified. Moreover, the expansion of systemic RNAi effect in grain aphid was observed by adding the fluorescently labeled dsRNA in an artificial diet assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BLAST:

Basic Local Alignment Search Tool

KOG:

Clusters of orthologous groups

dsRNA:

Double-stranded RNA

ESTs:

Expressed sequence tags

GO:

Gene ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

Nr:

Non-redundant database

Nt:

Nucleic acid database

qPCR:

Quantitative polymerase chain reaction

RNAi:

RNA interference

RPKM:

Read per kilobase per million

RT-PCR:

Reverse-transcript polymerase chain reaction

References

  • Aqueel MA, Leather SR (2011) Effect of nitrogen fertilizer on the growth and survival of Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Homoptera: Aphididae) on different wheat cultivars. Crop Prot 30:216–221

    Article  Google Scholar 

  • Awmack CS, Harrington R (2000) Elevated CO2 affects the interactions between aphid pests and host plant flowering. Agric For Entomol 2:57–61

    Article  Google Scholar 

  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Bautista MA, Miyata T, Miura K, Tanaka T (2009) RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem Mol Biol 39:38–46

    Article  CAS  PubMed  Google Scholar 

  • Bhatia V, Bhattacharya R, Uniyal PL, Singh R, Niranjan RS (2012) Host generated siRNAs attenuate expression of serine protease Gene in Myzus persicae. PLoS One 7:e46343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blackman RL, Eastop VF (1984) Aphids on the world’s crops: an identification and information guide. Wiley, New York

    Google Scholar 

  • Chen YA, Lin CC, Wang CD, Wu HB, Wang PI (2007) An optimized procedure greatly improves EST vector contamination removal. BMC Genomics 8:416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WE, Wetter T, Suhai S (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14:1147–1159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chou HH, Michael HH (2001) DNA sequence quality trimming and vector removal. Bioinformatics 17:1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Gotz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • DI Deraison C, Duportets L, Gorojankina T, Rahb Y, Jouanin L (2002) Cloning and characterization of a gut-specific cathepsin L from the aphid Aphis gossypii. Insect Mol Biol 13:265–177

    Google Scholar 

  • Dzitoyeva S, Dimitrijevic N, Manev H (2001) Intra-abdominal injection of double-stranded RNA into anesthetized adult Drosophila triggers RNA interference in the central nervous system. Mol Psychiatry 6:665

    Article  CAS  PubMed  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery M, Kostas S, Driver S, Mello C (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Gaur RK, Krupp G (1993) Enzymatic RNA synthesis with deoxynucleoside 5′-O (1-thiotriphosphates). FEBS Lett 315:56–60

    Article  CAS  PubMed  Google Scholar 

  • Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56:227–235

    Article  CAS  PubMed  Google Scholar 

  • International Aphid Genomics Consortium (2010b) Aphid White Paper II: proposal to complete development of the aphid model. IAGC–White Paper II-FINAL VERSION-September 13th 2010.

  • International Aphid Genomics Consortium (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8:e1000313

    Article  Google Scholar 

  • Jaubert-Possamai S, Le Trionnaire G, Bonhomme J, Christophides GK, Rispe C, Tagu D (2007) Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC Biotechnol 7:63

    Article  PubMed Central  PubMed  Google Scholar 

  • Jinek M, Doudna JA (2008) A three-dimensional view of the molecular machinery of RNA interference. Nature 457:405–412

    Article  Google Scholar 

  • Jose AM, Hunter CP (2007) Transport of sequence-specific RNA interference information between cells. Annu Rev Gene 41:305–330

    Article  CAS  Google Scholar 

  • Lassmann T, Hayashizaki Y, Daub CO (2009) TagDust—a program to eliminate artifacts from next generation sequencing data. Bioinformatics 25:2839–2840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Legeai F, Shigenobu S, Gauthier JP, Colbourne J, Rispe C, Collin O, Richards S, Wilson ACC, Tagu D (2010) AphidBase: a centralized bioinformatic resource for annotation of the pea aphid genome. Insect Mol Biol 19:5–12

    Article  CAS  PubMed  Google Scholar 

  • Liao Z, Jia QD, Li F, Han ZJ (2010) Identification of two piwi genes and their expression profile in honeybee, Apis mellifera. Arch Insect Biochem Physiol 74:91–102

    CAS  PubMed  Google Scholar 

  • Livak KJ, Thomas DS (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lynch JA, Desplan C (2006) A method for parental RNA interference in the wasp Nasonia vitripennis. Nat Protoc 1:486–494

    Article  CAS  PubMed  Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Martín D, Maestro O, Cruz J, Mané-Padrós D, Bellés X (2006) RNAi studies reveal a conserved role for RXR in molting in the cockroach Blattella germanica. Insect Physiol 52:410–416

    Article  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  CAS  PubMed  Google Scholar 

  • Meyering-Vos M, Müller A (2007) A Structure of the sulfakinin cDNA and gene expression from the mediterranean field cricket Gryllus bimaculatus. Insect Mol Biol 16:445–454

    Article  CAS  PubMed  Google Scholar 

  • Meyering-Vos M, Merz S, Sertkol M, Hoffmann KH (2006) Functional analysis of the allatostatin-a type gene in the cricket Gryllus bimaculatus and the armyworm Spodoptera frugiperda. Insect Biochem Mol Biol 36:492–504

    Article  CAS  PubMed  Google Scholar 

  • Michel H, Behr J, Harrenga A, Kannt A (1998) Cytochrome c oxidase: structure and spectroscopy. Annu Rev Bioph Biom 27:329–356

    Article  CAS  Google Scholar 

  • Morrison WP, Peairs FB (1998) Response model concept and economic impact. Response model for an introduced pest: the Russian wheat aphid. Lanham: MD: Entomol Soc Am.

  • Mutti NS, Park Y, Reese JC, Reeck GR (2006) RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J Insect Sci 6:1–7

    Article  PubMed  Google Scholar 

  • Nakakita H, Katsumata Y, Ozawa T (1971) The effect of phosphine on respiration of rat liver mitochondria. J Biochem 69:589–593

    CAS  PubMed  Google Scholar 

  • Oerke EC, Dehne HW, Schönbeck F, Weber A (1994) Crop production and crop protection: estimated losses in major food and cash crops. Elsevier, Amsterdam, pp 179–296

    Google Scholar 

  • Pitino M, Maffei ME, Coleman AD, Ridout CJ, Hogenhout SA (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS One 6:e25709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Price DR, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–400

    Article  CAS  PubMed  Google Scholar 

  • Shakesby AJ, Wallace IS, Isaacs HV, Pritchard J, Roberts DM, Douglas AE (2009) A water-specific aquaporin involved in aphid osmoregulation. Insect Biochem Mol Biol 39:1–10

    Article  CAS  PubMed  Google Scholar 

  • Siomi H, Siomi MC (2009) On the road to reading the RNA-interference code. Nature 457:396–404

    Article  CAS  PubMed  Google Scholar 

  • Smith CM, Belay T, Stauffer C, Stary P, Kubeckova I, Starkey S (2004) Identifiaction of Russian wheat aphid (Homoptera: Aphididae) biotypes virulent to the Dn4 resistance gene. J Econ Entomol 97:112–117

    Article  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dve Bi 17:463–516

    Article  CAS  Google Scholar 

  • Stoger E, Willianms S, Christou P, Down RE, Gatehouse JA (1999) Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Mol Breed 5:65–73

    Article  CAS  Google Scholar 

  • Taanman JW, Williams SL (2001) Assembly of cytochrome c oxidase: what can we learn from patients with cytochrome c oxidase deficiency? Biochem Soc T 29:446–451

    Article  CAS  Google Scholar 

  • Tagu D, Klingler JP, Moya A, Simon JC (2008) Early progress in aphid genomics and consequences for plant-aphid interactions studies. Mol Plant-Microbe Interact 21(6):701–708

    Article  CAS  PubMed  Google Scholar 

  • Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric JL, Barthel A (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, Zhang W (2009) Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One 4:e6225

    Article  PubMed Central  PubMed  Google Scholar 

  • Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9:R10

    Article  PubMed Central  PubMed  Google Scholar 

  • Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15:383–391

    Article  CAS  PubMed  Google Scholar 

  • Van Roessel, A.H. Brand (2004) Spreading silence with Sid. Genome Biology, 5 (2004), p. 208Wang CP, Chen Q, Luo K, Zhao HY, Zhang GS, Tlali, RM (2011) Evaluation of resistance in wheat germplasm to the aphids, Sitobion avenae based on Technique for Order Preference by Similarity to Ideal Solution TOPSIS and cluster methods. Afr J Agric Res 6: 1592–1599

  • Whangbo JS, Hunter CP (2008) Environmental RNA interference. Trends Genet 24:297–305

    Article  CAS  PubMed  Google Scholar 

  • Whyard S, Singh AD, Wong S (2009) Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem Mol Biol 39:824–832

    Article  CAS  PubMed  Google Scholar 

  • Williams RW, Rubin GM (2002) ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc Natl Acad Sci U S A 99:6889–6894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xia LQ, Ma Y, He Y, Jones HD (2012) GM wheat development in China: current status and challenges to commercialization. J Exp Bot 63:1785–1790

    Article  CAS  PubMed  Google Scholar 

  • Xu WN, Han ZJ (2008) Cloning and phylogenetic analysis of sid-1-like genes from aphids. J Insect Sci 8:1–6

    Article  PubMed  Google Scholar 

  • Ye J, Fang L, Zheng HK, Zhang Y, Chen J, Zhang ZJ, Wang J, Li ST, Li RQ, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:293–297

    Article  Google Scholar 

  • Yu XD, Pickett J, Ma Y, Bruce T, Napier J, Jones HD, Xia LQ (2012) Metabolic engineering of plant-derived (E)-β-farnesene synthase genes for a novel type of aphid-resistant genetically-modified crop plants. J Integr Plant Biol 54:282–299

    Article  CAS  PubMed  Google Scholar 

  • Yu XD, Wang GP, Huang SL, Ma YZ, Xia LQ (2014) Engineering plants for aphid resistance: current status and future perspectives. Theor Appl Genet 127:2065–2083

    Article  CAS  PubMed  Google Scholar 

  • Zha WJ, Peng XX, Chen RZ, Du B, Zhu LL, He GC (2011) Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One 6:e20504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang M, Zhou Y, Wang H, Jones HD, Gao Q, Wang DH, Ma YZ, Xia LQ (2013) Identifying potential RNAi targets in grain aphid (Sitobion avenae F.) based on transcriptome profiling of its alimentary canal after feeding on wheat plants. BMC Genomics 14:560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou X, Wheeler MM, Oi FM, Scharf ME (2008) RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem Mol Biol 38:805–815

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Huw Jones at Rothamsted Research, UK, for his critical review of this manuscript. This work was supported by grants from the Research Initiative on Transgenic Plants from the Ministry of Agriculture of China (2014ZX0800201B), Natural Science Foundation of China (grant nos. 31171618 and 31371702), and the Chinese State Key Laboratory for Biology of Plant Diseases and Insects (grant no. SKLOF201307). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanqin Xia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

The primer sets of 66 unigenes selected for dsRNA amplification. (XLSX 19 kb)

Table S2

The primer sets of 14 unigenes selected for qPCR amplifying to detecting the expression correlation between RPKM and qPCR of unigenes. (XLSX 22 kb)

Table S3

The annotations of 66 unigenes selected for dsRNA feeding experiments. (XLSX 31 kb)

Figure S1

The length distribution of contigs, singletons, and unigenes, and reads number distribution of the unigenes. (GIF 27 kb)

High Resolution (TIFF 1832 kb)

Figure S2

A Venn diagram illustrating shared and unique unigenes annotated in Nr, Swiss-Prot, KOG, GO, and KEGG public databases. Among 32,277 unigenes assembled, 27,093 unigenes were annotated in at least one of the public databases, including 21,635, 16,211, 15,957, 13,876, and 11,731 in Nr, Swiss-Prot, KOG, KEGG, and GO databases, respectively. (GIF 6 kb)

High Resolution (TIFF 853 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Liu, Q., Li, X. et al. Double-stranded RNA in the biological control of grain aphid (Sitobion avenae F.). Funct Integr Genomics 15, 211–223 (2015). https://doi.org/10.1007/s10142-014-0424-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-014-0424-x

Keywords

Navigation