Skip to main content
Log in

The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The AP2/ERF family is one of the largest transcription factor gene families that are involved in various plant processes, especially in response to biotic and abiotic stresses. Complete genome sequences of one of the world’s most important pulse crops chickpea (Cicer arietinum L.), has provided an important opportunity to identify and characterize genome-wide ERF genes. In this study, we identified 120 putative ERF genes from chickpea. The genomic organization of the chickpea ERF genes suggested that the gene family might have been expanded through the segmental duplications. The 120 member ERF family was classified into eleven distinct groups (I-X and VI-L). Transcriptional factor CarERF116, which is differentially expressed between drought tolerant and susceptible chickpea cultivar under terminal drought stress has been identified and functionally characterized. The CarERF116 encodes a putative protein of 241 amino acids and classified into group IX of ERF family. An in vitro CarERF116 protein-DNA binding assay demonstrated that CarERF116 protein specifically interacts with GCC box. We demonstrate that CarERF116 is capable of transactivation activity of and show that the functional transcriptional domain lies at the C-terminal region of the CarERF116. In transgenic Arabidopsis plants overexpressing CarERF116, significant up-regulation of several stress related genes were observed. These plants also exhibit resistance to osmotic stress and reduced sensitivity to ABA during seed germination. Based on these findings, we conclude that CarERF116 is an abiotic stress responsive gene, which plays an important role in stress tolerance. In addition, the present study leads to genome-wide identification and evolutionary analyses of chickpea ERF gene family, which will facilitate further research on this important group of genes and provides valuable resources for comparative genomics among the grain legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78. doi:10.1105/tpc.006130

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Agarwal M, Hao YJ, Kapoor A, Dong CH, Fujii H, Zheng XW, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645. doi:10.1074/jbc.M605895200

    Article  PubMed  CAS  Google Scholar 

  • Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M (1998) A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J 17:5484–5496. doi:10.1093/emboj/17.18.5484

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Avonce N, Leyman B, Mascorro-Gallardo JO, Van Dijck P, Thevelein JM, Iturriaga G (2004) The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol 136:3649–3659. doi:10.1104/pp. 104.052084

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Balaji S, Babu MM, Iyer LM, Aravind L (2005) Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Res 33:3994–4006. doi:10.1093/nar/gki709

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Busk PK, Pages M (1998) Regulation of abscisic acid-induced transcription. Plant Mol Biol 37:425–435. doi:10.1023/a:1006058700720

    Article  PubMed  CAS  Google Scholar 

  • Campos-Soriano L, Gomez-Ariza J, Bonfante P, Segundo BS (2011) A rice calcium-dependent protein kinase is expressed in cortical root cells during the presymbiotic phase of the arbuscular mycorrhizal symbiosis. BMC Plant Biol 11 doi:10.1186/1471-2229-11-90

  • Carvalho LC, Santos S, Vilela BJ, Amancio S (2008) Solanum lycopersicon Mill. and Nicotiana benthamiana L. under high light show distinct responses to anti-oxidative stress. J Plant Physiol 165:1300–1312. doi:10.1016/j.jplph.2007.04.009

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotech 16(4):664–668

    CAS  Google Scholar 

  • Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, Park CY, Kim JC, Park BO, Koo SC et al (2003) BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 132:1961–1972

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cho SK, Kim JE, Park JA, Eom TJ, Kim WT (2006) Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Lett 580:3136–3144. doi:10.1016/j.febslet.2006.04.062

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi:10.1046/j.1365-313x.1998.00343.x

    Article  PubMed  CAS  Google Scholar 

  • Dai XY, Xu YY, Ma QB, Xu WY, Wang T, Xue YB, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751. doi:10.1104/pp. 106.094532

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dalal M, Tayal D, Chinnusamy V, Bansal KC (2009) Abiotic stress and ABA-inducible group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139:137–145. doi:10.1016/j.jbiotec.2008.09.014

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta S, Wood J, Hicks J (1983) A plant DNA minipreparation: version II plant. Mol Biol Rep 1:19–21. doi:10.1007/BF02712670

    Article  CAS  Google Scholar 

  • Deokar AA, Kondawar V, Jain PK, Karuppayil SM, Raju NL, Vadez V, Varshney RK, Srinivasan R (2011) Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biol 11 doi:10.1186/1471-2229-11-70

  • Dong N, Liu X, Lu Y, Du LP, Xu HJ, Liu HX, Xin ZY, Zhang ZY (2010) Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Funct Integr Genomic 10:215–226. doi:10.1007/s10142-009-0157-4

    Article  CAS  Google Scholar 

  • Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rold promoter, domain-A of the 35S promoter and the 35S (2) promoter. Transgenic Res 4:388–396. doi:10.1007/bf01973757

    Article  PubMed  CAS  Google Scholar 

  • FAOSTAT (2012). http://faostat.fao.org/.

  • Fehlberg V, Vieweg MF, Dohmann EMN, Hohnjec N, Puhler A, Perlick AM, Kuster H (2005) The promoter of the leghaemoglobin gene VfLb29: functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots. J Exp Bot 56:799–806. doi:10.1093/jxb/eri074

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404. doi:10.2307/3870944

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gu YQ, Yang C, Thara VK, Zhou J, Martin GB (2000) Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12:771–785. doi:10.2307/3871000

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB (2002) Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:817–831. doi:10.1105/tpc.000794

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guo YL (2013) Gene family evolution in green plants with emphasis on the origination and evolution of Arabidopsis thaliana genes. Plant J 73:941–951. doi:10.1111/tpj.12089

    Article  PubMed  CAS  Google Scholar 

  • Haberer G, Kieber JJ (2002) Cytokinins. New insights into a classic phytohormone. Plant Physiol 128:354–362. doi:10.1104/pp. 010773

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Himmelbach A, Hoffmann T, Leube M, Hohener B, Grill E (2002) Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J 21:3029–3038. doi:10.1093/emboj/cdf316

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Horan K, Shelton CR, Girke T (2010) Predicting conserved protein motifs with Sub-HMMs. BMC Bioinforma 11:205. doi:10.1186/1471-2105-11-205

    Article  CAS  Google Scholar 

  • Hu YB, Chong K, Wang T (2008) OsRAF is an ethylene responsive and root abundant factor gene of rice. Plant Growth Regul 54:55–61. doi:10.1007/s10725-007-9228-5

    Article  CAS  Google Scholar 

  • Huang ZJ, Zhang ZJ, Zhang XL, Zhang HB, Huang DF, Huang RF (2004) Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes. FEBS Lett 573:110–116. doi:10.1016/j.febslet.2004.07.064

    Article  PubMed  CAS  Google Scholar 

  • Hwang SH, Lee IA, Yie SW, Hwang DJ (2008) Identification of an OsPR10a promoter region responsive to salicylic acid. Planta 227:1141–1150. doi:10.1007/s00425-007-0687-8

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jacquemin J, Ammiraju JS, Haberer G, Billheimer DD, Yu Y, Liu LC, Rivera LF, Mayer K, Chen M, Wing RA (2014) Fifteen million years of evolution in the oryza genus shows extensive gene family expansion. Mol Plant 7:642–656. doi:10.1093/mp/sst149

    Article  PubMed  CAS  Google Scholar 

  • Jung J, Won SY, Suh SC, Kim H, Wing R, Jeong Y, Hwang I, Kim M (2007) The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta 225:575–588. doi:10.1007/s00425-006-0373-2

    Article  PubMed  CAS  Google Scholar 

  • Kagale S, Rozwadowski K (2011) EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6:141–146

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kaur H, Verma P, Petla BP, Rao V, Saxena SC, Majee M (2013) Ectopic expression of the ABA-inducible dehydration-responsive chickpea L-myo-inositol 1-phosphate synthase 2 (CaMIPS2) in Arabidopsis enhances tolerance to salinity and dehydration stress. Planta 237:321–335. doi:10.1007/s00425-012-1781-0

    Article  PubMed  CAS  Google Scholar 

  • Klinedinst S, Pascuzzi P, Redman J, Desai M, Arias J (2000) A xenobiotic-stress-activated transcription factor and its cognate target genes are preferentially expressed in root tip meristems. Plant Mol Biol 42:679–688

    Article  PubMed  CAS  Google Scholar 

  • Ko JH, Yang SH, Han KH (2006) Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J 47:343–355. doi:10.1111/j.1365-313X.2006.02782.x

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Hong JP, Oh SK, Lee S, Choi D, Kim WT (2004) The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: Possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Mol Biol 55:61–81. doi:10.1007/s11103-004-0417-6

    Article  PubMed  CAS  Google Scholar 

  • Licausi F, Giorgi FM, Zenoni S, Osti F, Pezzotti M, Perata P (2010) Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics 11:719. doi:10.1186/1471-2164-11-719

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu Z, Kong L, Zhang M, Lv Y, Liu Y, Zou M, Lu G, Cao J, Yu X (2013) Genome-wide identification, phylogeny, evolution and expression patterns of AP2/ERF genes and cytokinin response factors in Brassica rapa ssp. pekinensis. PLoS One 8:e83444

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Medina J, Ballesteros ML, Salinas J (2007) Phylogenetic and functional analysis of Arabidopsis RCI2 genes. J Exp Bot 58:4333–4346. doi:10.1093/jxb/erm285

    Article  PubMed  CAS  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96. doi:10.1016/j.bbagrm.2011.08.004

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432. doi:10.1104/pp. 105.073783

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Oh SJ, Kim YS, Kwon CW, Park HK, Jeong JS, Kim JK (2009) Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150:1368–1379. doi:10.1104/pp. 109.137554

    Article  PubMed Central  PubMed  Google Scholar 

  • Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci U S A 94:7076–7081. doi:10.1073/pnas.94.13.7076

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-Type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046. doi:10.2307/3871362

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Puhakainen T, Hess MW, Makela P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753. doi:10.1023/B:PLAN.0000040903.66496.a4

    Article  PubMed  CAS  Google Scholar 

  • Qiu YP, Yu DQ (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65:35–47. doi:10.1016/j.envexpbot.2008.07.002

    Article  CAS  Google Scholar 

  • Ren X, Chen Z, Liu Y, Zhang H, Zhang M, Liu Q, Hong X, Zhu JK, Gong Z (2010) ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 63:417–429. doi:10.1111/j.1365-313X.2010.04248.x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Saibo NJM, Lourenco T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Annals Bot 103:609–623. doi:10.1093/aob/mcn227

    Article  CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Bioph Res Co 290:998–1009. doi:10.1006/bbrc.2001.6299

    Article  CAS  Google Scholar 

  • Sambrook J, Rusell DW (2001) Molecular Cloning: A Laboratory Manual Volume 1. Cold Spring Harbor. CSHL Press, New York

    Google Scholar 

  • Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR et al (2013) Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell 25:2115–2131. doi:10.1105/tpc.113.113068

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi IR, Omura T, Kikuchi S (2011) Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol 52:344–360. doi:10.1093/pcp/pcq196

    Article  PubMed  CAS  Google Scholar 

  • Shimada TL, Shimada T, Takahashi H, Fukao Y, Hara-Nishimura I (2008) A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana. Plant J 55:798–809. doi:10.1111/j.1365-313X.2008.03553.x

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223. doi:10.1016/s1369-5266(00)80068-0

    Article  PubMed  CAS  Google Scholar 

  • Shukla RK, Raha S, Tripathi V, Chattopadhyay D (2006) Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiol 142:113–123. doi:10.1104/pp. 106.081752

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stougaard J, Jorgensen JE, Christensen T, Kuhle A, Marcker KA (1990) Interdependence and nodule specificity of cis-acting regulatory elements in the soybean leghemoglobin-lbc3 and n23 gene promoters. Mol Gen Genet 220:353–360. doi:10.1007/bf00391738

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tang W, Charles TM, Newton RJ (2005) Overexpression of the pepper transcription factor CaPF1 in transgenic virginia pine (Pinus virginiana mill.) confers multiple stress tolerance and enhances organ growth. Plant Mol Biol 59:603–617. doi:10.1007/s11103-005-0451-z

    Article  PubMed  CAS  Google Scholar 

  • Tapia G, Verdugo I, Yañez M, Ahumada I, Theoduloz C, Cordero C, Poblete F, González E, Ruiz-Lara S (2005) Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicon chilense Dun. Plant Physiol 138:2075–2086. doi:10.1104/pp.105.059766

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tian Y, Zhang HW, Pan XW, Chen XL, Zhang ZJ, Lu XY, Huang RF (2011) Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res 20:857–866. doi:10.1007/s11248-010-9463-9

    Article  PubMed  CAS  Google Scholar 

  • Tiwari SB, Belachew A, Ma SF, Young M, Ade J, Shen Y, Marion CM, Holtan HE, Bailey A, Stone JK, Edwards L, Wallace AD, Canales RD, Adam L, Ratcliffe OJ, Repetti PP (2012) The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors. Plant J 70:855–865. doi:10.1111/j.1365-313X.2012.04935.x

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM, Siddique KHM, Town CD, Hoisington DA (2009) A comprehensive resource of drought- and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics 10 doi:10.1186/1471-2164-10-523

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S, Rathore A et al (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.) TAG Theoretical and applied genetics. Theor Appl Genet 127:445–462. doi:10.1007/s00122-013-2230-6

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang H, Huang Z, Chen Q, Zhang Z, Zhang H, Wu Y, Huang D, Huang R (2004) Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol Biol 55:183–192. doi:10.1007/s11103-004-0113-6

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and colinearity. Nucleic Acids Res 40:e49. doi:10.1093/nar/gkr1293

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217. doi:10.1093/mp/ssm022

    Article  PubMed  CAS  Google Scholar 

  • Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, Pan S, Zhong X, Xie D (2012) Genome-wide analysis of bZIP-encoding genes in maize. DNA Res 19:463–476. doi:10.1093/dnares/dss026

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye HY, Xiong LZ (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952. doi:10.1104/pp. 108.128199

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC, Zhao YX, Lu Y, Ni ZY, Liu L, Qiu ZG, Ma YZ (2007) Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 65:719–732. doi:10.1007/s11103-007-9237-9

    Article  PubMed  CAS  Google Scholar 

  • Yi SY, Kim JH, Joung YH, Lee S, Kim WT, Yu SH, Choi D (2004) The pepper transcription factor CaPF1 confers pathogen and freezing Tolerance in Arabidopsis. Plant Physiol 136:2862–2874. doi:10.1104/pp. 104.042903

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yin G, Xu H, Xiao S, Qin Y, Li Y, Yan Y, Hu Y (2013) The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups. BMC Plant Biol 13:148. doi:10.1186/1471-2229-13-148

    Article  PubMed Central  PubMed  Google Scholar 

  • Youm JW, Jeon JH, Choi D, Yi SY, Joung H, Kim HS (2008) Ectopic expression of pepper CaPF1 in potato enhances multiple stresses tolerance and delays initiation of in vitro tuberization. Planta 228:701–708. doi:10.1007/s00425-008-0782-5

    Article  PubMed  CAS  Google Scholar 

  • Zarei A, Korbes AP, Younessi P, Montiel G, Champion A, Memelink J (2011) Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis. Plant Mol Biol 75:321–331. doi:10.1007/s11103-010-9728-y

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang G, Chen M, Chen X, Xu Z, Guan S, Li LC, Li A, Guo J, Mao L, Ma Y (2008) Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J Exp Bot 59:4095–4107. doi:10.1093/jxb/ern248

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang GY, Chen M, Li LC, Xu ZS, Chen XP, Guo JM, Ma YZ (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60:3781–3796. doi:10.1093/jxb/erp214

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang H, Liu W, Wan L, Li F, Dai L, Li D, Zhang Z, Huang R (2010) Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res 19:809–818. doi:10.1007/s11248-009-9357-x

    Article  PubMed  CAS  Google Scholar 

  • Zhu Q, Dabi T, Lamb C (1995) TATA box and initiator functions in the accurate transcription of a plant minimal promoter in-vitro. Plant Cell 7:1681–1689. doi:10.2307/3870029

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhu X, Qi L, Liu X, Cai S, Xu H, Huang R, Li J, Wei X, Zhang Z (2014) The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses. Plant Physiol 164:1499–1514. doi:10.1104/pp. 113.229575

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhuang J, Cai B, Peng RH, Zhu B, Jin XF, Xue Y, Gao F, Fu XY, Tian YS, Zhao W, Qiao YS, Zhang Z, Xiong AS, Yao QH (2008) Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Biochem Biophy Res Comm 371:468–474. doi:10.1016/j.bbrc.2008.04.087

    Article  CAS  Google Scholar 

  • Zwack PJ, Robinson BR, Risley MG, Rashotte AM (2013) Cytokinin response factor 6 negatively regulates leaf senescence and is induced in response to cytokinin and numerous abiotic stresses. Plant Cell Physiol 54:971–981. doi:10.1093/pcp/pct049

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Indian Council of Agricultural Research (ICAR) under the Network Project on Transgenics in Crops (NPTC) and the National Fund for Basic, Strategic and Frontier Application Research in Agriculture (NFBSFARA) to RS. We thank Dr. Pooran Gaur of ICRISAT for sharing the seeds of chickpea genotypes used in the study. We also acknowledge Dr. K.V. Prabhu and the staff of National Phytotron Facility, IARI, New Delhi-110012, India, for their help in growing plant materials in the growth chambers and greenhouses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramamurthy Srinivasan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 264 kb)

Fig. S2

(DOCX 163 kb)

Fig. S3

(DOCX 419 kb)

Fig. S4

(DOCX 325 kb)

Fig. S5

(DOCX 918 kb)

Fig. S6

(JPEG 117 kb)

Table S1

(XLSX 41 kb)

Table S2

(DOCX 16 kb)

Table S3

(DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deokar, A.A., Kondawar, V., Kohli, D. et al. The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor. Funct Integr Genomics 15, 27–46 (2015). https://doi.org/10.1007/s10142-014-0399-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-014-0399-7

Keywords

Navigation