Skip to main content
Log in

Identification of ERF genes in peanuts and functional analysis of AhERF008 and AhERF019 in abiotic stress response

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Ethylene-responsive factor (ERF) play an important role in regulating gene expression in plant development and response to stresses. In peanuts (Arachis hypogaea L.), which produce flowers aerially and pods underground, only a few ERF genes have been identified so far. This study identifies 63 ERF unigenes from 247,313 peanut EST sequences available in the NCBI database. The phylogeny, gene structures, and putative conserved motifs in the peanut ERF proteins were analysed. Comparative analysis revealed the absence of two subgroups (A1 and A3) of the ERF family in peanuts; only 10 subgroups were identified in peanuts compared to 12 subgroups in Arabidopsis and soybeans. AP2/ERF domains were found to be conserved among peanuts, Arabidopsis, and soybeans. Outside the AP2/ERF domain, many soybean-specific conserved motifs were also detected in peanuts. The expression analysis of ERF family genes representing each clade revealed differential expression patterns in response to biotic and abiotic stresses. Overexpression of AhERF008 influenced the root gravity of Arabidopsis, whereas overexpression of AhERF019 enhanced tolerance to drought, heat, and salt stresses in Arabidopsis. The information generated in this study will be helpful to further investigate the function of ERFs in plant development and stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25(12):1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16(9):2463–2480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • An C, Mou Z (2011) Salicylic acid and its function in plant immunity. J Integr Plant Biol 53(6):412–428

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 1(34 (Web Server issue)):W369–W373

    Article  Google Scholar 

  • Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci U S A 101(13):4706–4711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol 140(4):1384–1396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao Y, Song F, Goodman RM, Zheng Z (2006) Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress. J Plant Physiol 163:1167–1178

    Article  CAS  PubMed  Google Scholar 

  • Chen N, Yang Q, Su M, Pan L, Chi X, Chen M, He Y, Yang Z, Wang T, Wang M, Yu S (2012) Cloning of six ERF family transcription factor genes from peanut and analysis of their expression during abiotic stress. Plant Mol Biol Report 30(6):1415–1425

    Article  CAS  Google Scholar 

  • Chen X, Zhu W, Azam S, Li H, Zhu F, Li H, Hong Y, Liu H, Zhang E, Wu H, Yu S, Zhou G, Li S, Zhong N, Wen S, Li X, Knapp SJ, Ozias-Akins P, Varshney RK, Liang X (2013) Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion. Plant. Biotechnol J 11(1):115–127

    CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55(395):225–236

  • Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ (2002) The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298(5596):1238–1241

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2010) FAO Statistical Database. From Food and Agricultural Organization, Rome, Italy, www.faostat.fao.org/site/339/default.aspx

  • Fischer U, Dröge-Laser W (2004) Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Mol Plant-Microbe Interact 17(10):1162–1171

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9(4):436–442

  • Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gu YQ, Yang C, Thara VK, Zhou J, Martin GB (2000) Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12(5):771–786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7(4):465–471

    Article  CAS  PubMed  Google Scholar 

  • Hao DY, Ohme-Takagi M, Sarai A (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethyleneresponsive element-binding factor (ERF domain) in plants. J Biol Chem 273:26857–26861

    Article  CAS  PubMed  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026–1030

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Liu S (2011) Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers. Genet Mol Biol 34(4):624–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang B, Jin L, Liu J (2007) Molecular cloning and functional characterization of a DREB1/CBF-like gene (GhDREB1L) from cotton. Sci China Ser C—Life Sci 50:7–14

    Google Scholar 

  • Jin LG, Liu JY (2008) Molecular cloning, expression profile and promoter analysis of a novel ethylene responsive transcription factor gene GhERF4 from cotton. Plant Physiol Biochem 46:46–53

    CAS  PubMed  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  CAS  PubMed  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  CAS  PubMed  Google Scholar 

  • Leon-Reyes A, Van der Does D, De Lange ES, Delker C, Wasternack C, Van Wees SC, Ritsema T, Pieterse CM (2010a) Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta 232(6):1423–1432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leon-Reyes A, Du Y, Koornneef A, Proietti S, Körbes AP, Memelink J, Pieterse CM, Ritsema T (2010b) Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Mol Plant-Microbe Interact 23(2):187–197

    Article  CAS  PubMed  Google Scholar 

  • Licausi F, Giorgi FM, Zenoni S, Osti F, Pezzotti M, Perata P (2010) Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics 11:719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199(3):639–649

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur J Biochem 262:247–257

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15(1):165–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mehrnia M, Balazadeh S, Zanor MI, Mueller-Roeber B (2013) EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis. Plant Physiol 162(2):842–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):86–96

    Article  CAS  PubMed  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genomewide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson SC, Simpson CE, Starr JL (1989) Resistance to Meloidogyne arenaria in Arachis spp.. Germplasm J Nematol 21(4S):654–660

    CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7(2):173–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13:1959–1968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oliva M, Dunand C (2007) Waving and skewing: how gravity and the surface of growth media affect root development in Arabidopsis. New Phytol 176(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Oñate-Sánchez L, Singh KB (2002) Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol 128(4):1313–1322

  • Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13(5):1035–1046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Philosoph-Hadas S, Friedman H, Meir S (2005) Gravitropic bending and plant hormones. Vitam Horm 72:31–78

    Article  CAS  PubMed  Google Scholar 

  • Pirrello J, Prasad BC, Zhang W, Chen K, Mila I, Zouine M, Latché A, Pech JC, Ohme-Takagi M, Regad F, Bouzayen M (2012) Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biol 12(1):190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pre M, Atallah M, Champion A, De Vos M, Pieterse CM, Memelink J (2008) The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol 147(3):1347–1357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45(8):1042–1052

    CAS  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Seo YJ, Park JB, Cho YJ, Jung C, Seo HS, Park SK, Nahm BH, Song JT (2010) Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Mol Cells 30(3):271–277

    Article  CAS  PubMed  Google Scholar 

  • Sharma MK, Kumar R, Solanke AU, Sharma R, Tyagi AK, Sharma AK (2010) Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol Gen Genomics 284(6):455–475

    Article  CAS  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12(23):3703–3714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanism. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    CAS  PubMed  Google Scholar 

  • Upadhyay RK, Soni DK, Singh R, Dwivedi UN, Pathre UV, Nath P, Sane AP (2013) SlERF36, an EAR-motif-containing ERF gene from tomato, alters stomatal density and modulates photosynthesis and growth. J Exp Bot. doi:10.1093/jxb/ert162

    PubMed Central  PubMed  Google Scholar 

  • Wan L, Zhang J, Zhang H, Zhang Z, Quan R, Zhou S, Huang R (2011) Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS One 6(9):e25216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H, Huang Z, Chen Q, Zhang Z, Zhang H, Wu Y, Huang D, Huang R (2004) Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol Biol 55(2):183–192

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wan L, Zhang L, Zhang Z, Zhang H, Quan R, Zhou S, Huang R (2012) An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Mol Biol 78(3):275–288

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442(7103):705–708

    Article  CAS  PubMed  Google Scholar 

  • Xu ZS, Chen M, Li LC, Ma YZ (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol J53(7):570–585

    Article  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6(2):251–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K (2005) Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 58:585–596

    Article  CAS  PubMed  Google Scholar 

  • Yi SY, Kim JH, Joung YH, Lee S, Kim WT, Yu SH, Choi D (2004) The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol 136(1):2862–2874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Youm JW, Jeon JH, Choi D, Yi SY, Joung H, Kim HS (2008) Ectopic expression of pepper CaPF1 in potato enhances multiple stresses tolerance and delays initiation of in vitro tuberization. Planta 228(4):701–708

    Article  CAS  PubMed  Google Scholar 

  • Zarei A, Korbes AP, Younessi P, Montiel G, Champion A, Memelink J (2011) Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis. Plant Mol Biol 75(4–5):321–331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Huang Z, Xie B, Chen Q, Tian X, Zhang X, Zhang H, Lu X, Huang D, Huang R (2004) The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta 220(2):262–270

  • Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42(5):689–707

    Article  CAS  PubMed  Google Scholar 

  • Zhang JY, Broeckling CD, Sumner LW, Wang ZY (2007) Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol 64(3):265–278

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Chen M, Chen X, Xu Z, Guan S, Li LC, Li A, Guo J, Mao L, Ma Y (2008) Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J Exp Bot 59(15):4095–4107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Z, Zhang H, Quan R, Wang XC, Huang R (2009) Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol 150(1):365–377

  • Zhu Z, Shi J, Xu W, Li H, He M, Xu Y, Xu T, Yang Y, Cao J, Wang Y (2013) Three ERF transcription factors from Chinese wild grapevine Vitis pseudoreticulata participate in different biotic and abiotic stress-responsive pathways. J Plant Physiol 170(10):923–933

    Article  CAS  PubMed  Google Scholar 

  • Zhuang J, Cai B, Peng RH, Zhu B, Jin XF, Xue Y, Gao F, Fu XY, Tian YS, Zhao W, Qiao YS, Zhang Z, Xiong AS, Yao QH (2008) Genome-wide analysis of the AP2/ERF gene family in populous trichocarpa. Biochem Biophys Res Commun 371(3):468–474

    Article  CAS  PubMed  Google Scholar 

  • Zhuang J, Chen JM, Yao QH, Xiong F, Sun CC, Zhou XR, Zhang J, Xiong AS (2011) Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum. Mol Biol Rep 38(2):745–753

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (No. 31071456), the National Basic Research Program of China (2013CB127803), the China Agriculture Research System (No. CARS-14), and the China Postdoctoral Science Foundation (No. 2013M530782).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boshou Liao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1

Primer sequences of the peanut ERF genes referenced in this article. (XLSX 18 kb)

ESM Table 2

Characteristics of the peanut ERF genes. (XLSX 11 kb)

ESM Table 3

ESTs coding the 63 ERF factors identified in peanuts. (XLSX 2592 kb)

ESM Table 4

Summary of conserved motifs (CMs) within the AhERF family by comparative analysis with soybeans. (XLSX 37 kb)

ESM Table 5

Expression patterns of the peanut stress responsive ERF genes. (XLSX 12 kb)

ESM Table 6

Annotated information for the peanut ERFs from the NCBI database. (XLSX 10 kb)

ESM Fig. 1

Phylogenetic tree of peanut and soybean ERF proteins. (GIF 198 kb)

High resolution image (TIFF 763 kb)

ESM Fig. 2

Amino acid sequence alignment of the AP2/ERF DNA-binding domains from the 63 peanut and 98 soybean ERF proteins described by Nakano et al. (2006) using ClustalW. (GIF 6292 kb)

High resolution image (TIFF 6292 kb)

ESM Fig. 3

Unrooted phylogenetic tree of peanut ERF proteins. (GIF 30 kb)

High resolution image (TIFF 926 kb)

ESM Fig. 4

Phylogenetic relationships among peanut CBF/DREB subfamily (group A) unigenes. (GIF 24 kb)

High resolution image (TIFF 1846 kb)

ESM Fig. 5

Phylogenetic relationships among the peanut ERF subfamily (group B) unigenes. (GIF 54 kb)

High resolution image (TIFF 1802 kb)

ESM Fig. 6

EAR motif-like sequences conserved in the C-terminal region of subgroups A-5 and B-1 in peanuts and soybeans. (A) Amino acid sequence alignment of the C-terminal region of proteins from subgroup A-5. (B) Amino acid sequence alignment of the C-terminal region of proteins from subgroup B-1 proteins. (GIF 164 kb)

High resolution image (TIFF 2029 kb)

ESM Fig. 7

Soybean-specific sequence motifs conserved in subgroups A-6, B-1, and B-2 of the ERF family are also exist in peanuts. (A) Amino acid sequence alignment of proteins from subgroup A-6. (B) Amino acid sequence alignment of proteins from subgroup B-1. (C) Amino acid sequence alignment of proteins from subgroup B-2. (GIF 128 kb)

High resolution image (TIFF 3518 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, L., Wu, Y., Huang, J. et al. Identification of ERF genes in peanuts and functional analysis of AhERF008 and AhERF019 in abiotic stress response. Funct Integr Genomics 14, 467–477 (2014). https://doi.org/10.1007/s10142-014-0381-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-014-0381-4

Keywords

Navigation