Skip to main content
Log in

A radiation hybrid map of chromosome 1D reveals synteny conservation at a wheat speciation locus

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The species cytoplasm specific (scs) genes affect nuclear-cytoplasmic interactions in interspecific hybrids. A radiation hybrid (RH) mapping population of 188 individuals was employed to refine the location of the scs ae locus on Triticum aestivum chromosome 1D. “Wheat Zapper,” a comparative genomics tool, was used to predict synteny between wheat chromosome 1D, Oryza sativa, Brachypodium distachyon, and Sorghum bicolor. A total of 57 markers were developed based on synteny or literature and genotyped to produce a RH map spanning 205.2 cR. A test-cross methodology was devised for phenotyping of RH progenies, and through forward genetic, the scs ae locus was pinpointed to a 1.1 Mb-segment containing eight genes. Further, the high resolution provided by RH mapping, combined with chromosome-wise synteny analysis, located the ancestral point of fusion between the telomeric and centromeric repeats of two paleochromosomes that originated chromosome 1D. Also, it indicated that the centromere of this chromosome is likely the result of a neocentromerization event, rather than the conservation of an ancestral centromere as previously believed. Interestingly, location of scs locus in the vicinity of paleofusion is not associated with the expected disruption of synteny, but rather with a good degree of conservation across grass species. Indeed, these observations advocate the evolutionary importance of this locus as suggested by “Maan’s scs hypothesis.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akagi H, Nakamura A, Yokozeki-Misono Y et al (2004) Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein. Theor Appl Genet 108:1449–1457

    Article  PubMed  CAS  Google Scholar 

  • Al-Kaff N, Knight E, Bertin I et al (2008) Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling. Ann Bot 101:863–872

    Article  PubMed  CAS  Google Scholar 

  • Alnemer LM, Seetan RI, Bassi FM, et al. (2013) Wheat Zapper: a flexible online tool for colinearity studies in plants. Functional Integrative Genomics (in press)

  • Amarnath D, Choi I, Moawad AR, Wakayama T, Campbell KH (2011) Nuclear-cytoplasmic incompatibility and inefficient development of pig-mouse cytoplasmic hybrid embryos. Reproduction 142:295–307

    Article  PubMed  CAS  Google Scholar 

  • Asakura N, Nakamura C, Ohtsuka I (2000) Homoeoallelic gene Ncc-tmp of Triticum timopheevii conferring compatibility with the cytoplasm of Aegilops tauschii in the tetraploid wheat nuclear background. Genome 43:503–511

    PubMed  CAS  Google Scholar 

  • Bogdanova VS (2007) Inheritance of organelle DNA markers in a pea cross associated with nuclear-cytoplasmic incompatibility. Theor Appl Genet 114:333–339

    Article  PubMed  CAS  Google Scholar 

  • Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends Genet 19(12):709–716

    Article  PubMed  CAS  Google Scholar 

  • Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial–nuclear interactions. Trends Genet 23:81–90

    Article  PubMed  CAS  Google Scholar 

  • Cisar G, Cooper DB (2002) Hybrid wheat. In: Curtis BC, Rajaram S, Macpherson GH (eds) Bread wheat: improvement and production, plant production and protection series no. 30. FAO, Rome, pp 317–330

    Google Scholar 

  • de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) Carthagene: multipopulation intergrated genetic and radiated hybrid mapping. Bioinformatics 21:1703–1704

    Article  PubMed  Google Scholar 

  • Devos KM (2010) Grass genomes organization and evolution. Curr Opin Plant Biol 13:139–145

    Article  PubMed  CAS  Google Scholar 

  • Dolezel J, Simkova H, Kubalakova M et al (2009) Chromosome genomics in the Triticeae. In: Feuillet C, Muehlbauer GJ (eds) Genetics and Genomics of the Triticeae. Springer, New York, pp 285–316

    Chapter  Google Scholar 

  • Erayman M, Sandhu D, Sidhu D et al (2004) Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Res 32:3546–3565

    Article  PubMed  CAS  Google Scholar 

  • Ferreri GC, Liscinsky DM, Mack JA, Eldridge MD, O’Neill RJ (2005) Retention of latent centromeres in the Mammalian genome. J Hered 96(3):217–224

    Article  PubMed  CAS  Google Scholar 

  • Garcion C, Guilleminot J, Kroj T et al (2006) AKRP and EMB506 are two ankyrin repeat proteins essential for plastid differentiation and plant development in Arabidopsis. Plant J 48:895–906

    Article  PubMed  CAS  Google Scholar 

  • Gehlhar SB, Simons KJ, Maan SS, Kianian SF (2005) Genetic analysis of the species cytoplasm specific gene (scsd) derived from durum wheat. J Hered 96(4):404–409

    Article  PubMed  CAS  Google Scholar 

  • Haider N (2012) Evidence for the origin of the B genome of bread wheat based on chloroplast DNA. Turk J Agric For 36:13–25

    CAS  Google Scholar 

  • Hanson MR (1991) Plant mitochondrial mutations and male sterility. Annu Rev Genet 25:461–486

    Article  PubMed  CAS  Google Scholar 

  • Heazlewood JL, Whelan J, Millar AH (2003) The products of the mitochondrial orf25 and orfB genes are FO components in the plant F1FO ATP synthase. FEBS Lett 540:201–205

    Article  PubMed  CAS  Google Scholar 

  • Hossain KG, Riera-Lizarazu O, Kalavacharla V et al (2004a) Radiation hybrid mapping of the species cytoplasm-specific (scs ae) gene in wheat. Genetics 168:415–423

    Article  PubMed  CAS  Google Scholar 

  • Hossain KG, Riera-Lizarazu O, Kalavacharla V et al (2004b) Molecular cytogenetic characterization of an alloplasmic durum wheat line with a portion of chromosome 1D of Triticum aestivum carrying the scs ae gene. Genome 47:206–214

    Article  PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jia L, Dienhart M, Schramp M et al (2003) Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. EMBO J 22:6438–6447

    Article  PubMed  CAS  Google Scholar 

  • Jia L, Dienhart MK, Stuart RA (2007) Oxa1 directly interacts with Atp9 and mediates its assembly into the mitochondrial F1Fo-ATP synthase complex. Mol Biol Cell 18:1897–1908

    Article  PubMed  CAS  Google Scholar 

  • Joppa LR (1993) Chromosome engineering in tetraploid wheat. Crop Sci 33:908–913

    Article  Google Scholar 

  • Kalavacharla V, Hossain K, Gu YQ et al (2006) High-resolution radiation hybrid map of wheat chromosome 1D. Genetics 173:1089–1099

    Article  PubMed  CAS  Google Scholar 

  • Kilian B, Özkan H, Deusch O et al (2007) Independent wheat B and G genome origins in outcrossing Ae. progenitor haplotypes. Mol Biol Evol 24:217–227

    Article  PubMed  CAS  Google Scholar 

  • Klein RR, Klein PE, Mullet JE et al (2005) Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theor Appl Genet 111:994–1012

    Article  PubMed  CAS  Google Scholar 

  • Knopf RR, Adam Z (2012) Rhomboid proteases in plants – still in square one? Physiol Plant 145:41–51

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bassi FM, Paux E et al (2012) DNA repair and crossing over favor similar chromosome regions as discovered in radiation hybrid of Triticum. BMC Genomics 13:339

    Article  PubMed  CAS  Google Scholar 

  • Kynast R, Okagaki R, Rines H, Phillips R (2002) Maize individualized chromosome and derived radiation hybrid lines and their use in functional genomics. Funct Integr Genom 2:60–69

    Article  CAS  Google Scholar 

  • Leister D (2005) Origin, evolution and genetic effects of nuclear insertions of organelle DNA. Trends Genet 21:655–663

    Article  PubMed  CAS  Google Scholar 

  • Li W, Zhang P, Fellers JP, Friebe B, Gill BS (2004) Sequence composition, organization, and evolution of the core Triticeae genome. Plant J 40:500–511

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Cui S, Horner HT, Weiner H, Schnable PS (2001) Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize. Plant Cell 13:1063–1078

    PubMed  CAS  Google Scholar 

  • Liu S, Chao S, Anderson JA (2008) New DNA markers for high molecular weight glutenin subunits in wheat. Theor Appl Genet 118:177–183

    Article  PubMed  CAS  Google Scholar 

  • Luo MC, Deal KR, Akhunov ED et al (2009) Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc Natl Acad Sci USA 106:15780–15785

    Article  PubMed  CAS  Google Scholar 

  • Maan SS (1973) Cytoplasmic variability in Triticinae. In: E.R. Sears and. L.M.S. Sears (ed.) Proc IV Int Wheat Genet Symp (pp. 367–373). Columbia, MO

  • Maan SS (1978) Cytoplasmic relationships among the D- and M-genome Ae. species. In: Ramanujam (ed.) Proc V Int Wheat Genet Symp (pp. 232–250). New Delhi, India

  • Maan SS (1991) Nucleo-cytoplasmic genetics of wheat. In: Sasakuma T, Kinoshita T (eds) Proceedings of the international symposium on nuclear and organeller genetics of wheat. Hokkaido University, Sapporo, Japan, pp 75–l94

    Google Scholar 

  • Maan SS (1992a) Genetic analyses of male fertility restoration in wheat: V anomalous results of a monosomic analysis. Crop Sci 32:28–35

    Article  Google Scholar 

  • Maan SS (1992b) A gene for embryo-endosperm compatibility and seed viability in alloplasmic Triticum turgidum. Genome 35:772–779

    Article  Google Scholar 

  • Maan SS (1992c) Transfer of the species specific cytoplasm (scs) from Triticum timopheevii to Triticum turgidum. Genome 35:238–243

    Article  Google Scholar 

  • Maan SS (1992d) The scs and Vi genes correct a syndrome of cytoplasmic effects in alloplasmic durum wheat. Genome 35:780–787

    Article  Google Scholar 

  • Maan SS, Joppa LR, Kianian SF (1999) Linkage between the centromere and a gene producing nucleocytoplasmic compatibility in durum wheat. Crop Sci 39:1044–1048

    Article  Google Scholar 

  • Martin A, Simpfendorfer S, Hare RA, Eberhard FS, Sutherland MW (2011) Retention of D genome chromosomes in pentaploid wheat crosses. Heredity 107:315–319

    Article  PubMed  CAS  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, et al. (2008) Catalogue of gene symbols for wheat. In: 11th International Wheat Genetics Symposium 24–29 August 2008 Brisbane, Qld Australia

  • Michalak MK, Ghavami F, Lazo GR, Gu YQ, Kianian SF (2009) Evolutionary relationship of nuclear genes encoding mitochondrial proteins across four grass species and Arabidopsis thaliana. Maydica 54:471–483

    Google Scholar 

  • Murat F, Xu J-H, Tannier E et al (2010) Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res 20:1545–1557

    Article  PubMed  CAS  Google Scholar 

  • Neumann P, Navrátilová A, Koblížková A et al (2011) Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA 2:4

    Article  PubMed  CAS  Google Scholar 

  • Nott A, Jung H-S, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759

    Article  PubMed  CAS  Google Scholar 

  • Panneerselvam P, Singh LP, Ho B, Chen J, Ding JL (2012) Targeting of pro-apoptotic TLR adaptor SARM to mitochondria: definition of the critical region and residues in the signal sequence. Biochem J 442:263–271

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Paux E, Roger D, Badaeva E et al (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48:463–474

    Article  PubMed  CAS  Google Scholar 

  • Peng JH, Zadeh H, Lazo GR et al (2004) Chromosome bin map of expressed sequence tags in homoeologous group 1 of hexaploid wheat and homoeology with rice and Arabidopsis. Genetics 168:609–623

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Echalier B, Chao S et al (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genome of polyploidy wheat. Genetics 168:701–712

    Article  PubMed  CAS  Google Scholar 

  • Qi L, Friebe B, Wu J, et al. (2010) The compact Brachypodium genome conserves centromeric regions of a common ancestor with wheat and rice. Funct and Integr Genomics

  • Rasko JEJ, Battini J-L, Kruglyak L, Cox DR, Miller AD (2000) Precise gene localization by phenotypic assay of radiation hybrid cells. PNAS 97:7388–7392

    Article  PubMed  CAS  Google Scholar 

  • Riera-Lizarazu O, Vales MI, Kianian SF (2008) Radiation hybrid (RH) and HAPPY mapping in plants. Cytogenet Genome Res 120:3–4

    Article  Google Scholar 

  • Romisch K (2006) Cdc48p is UBX-linked to ER ubiquitin ligases. Trends Biochem Sci 31:24–25

    Article  PubMed  Google Scholar 

  • Saha D, Prasad AM, Srinivasan R (2007) Pentatricopeptide repeat proteins and their emerging roles in plants. Plant Phys Biochem 45:521–534

    Article  CAS  Google Scholar 

  • Sasakuma T, Maan SS (1978) EMS-induced male-sterile mutants in euplasmic and alloplasmic common wheat. Crop Sci 18:850–853

    Article  Google Scholar 

  • Schnurbusch T, Collins NC, Eastwood RF et al (2007) Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat. Theor Appl Genet 115:451–461

    Article  PubMed  CAS  Google Scholar 

  • Seth K (2009) High resolution mapping of the scsti gene in durum wheat and conserved colinearity across three grass genomes: wheat, rice and Brachypodium. PhD Thesis Dissertation, North Dakota State University, Fargo

  • Simons KJ, Gelhar SB, Maan SS, Kianian SF (2003) Detailed mapping of the species cytoplasm-specific (scs) gene in durum wheat. Genetics 165:2129–2136

    PubMed  CAS  Google Scholar 

  • Somers DJ, Kirkpatrick R, Moniwa M, Walsh W (2003) Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 49:431–437

    Article  Google Scholar 

  • Song SQ, Tian MH, Kan J, Cheng HY (2009) The response difference of mitochondria in recalcitrant Antiaris toxicaria axes and orthodox Zea mays embryos to dehydration injury. J Integr Plant Biol 51:646–653

    Article  PubMed  CAS  Google Scholar 

  • Spielmeyer W, Singh RP, McFadden H et al (2008) Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18: a disease resistance locus effective against multiple pathogens in wheat. Theor Appl Genet 116:481–490

    Article  PubMed  CAS  Google Scholar 

  • Sykora P, Croteau DL, Bohr VA, Wilson DM III (2011) Aprataxin localizes to mitochondria and preserves mitochondrial function. PNAS 108:7437–7442

    Article  PubMed  Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Tsunewaki K (1980) Genetic diversity of the cytoplasm in Triticum and Ae.. pp 49–100, Japan Society for the promotion of science 5-3-1 Kojimachi, Chiyodaku, Tokyo, Japan

  • Tsunewaki K (2009) Plasmon analysis in the Triticum-Ae. complex. Breed Sci 59:455–470

    Article  CAS  Google Scholar 

  • Vrána J, Kubaláková M, Simková H et al (2000) Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156:2033–2041

    PubMed  Google Scholar 

  • Wang CW, Lee SC (2012) The ubiquitin-like (UBX)-domain-containing protein Ubx2/Ubxd8 regulates lipid droplet homeostasis. J Cell Sci 125:2930–2939

    Article  PubMed  CAS  Google Scholar 

  • Wanjugi H, Coleman-Derr D, Huo N et al (2009) Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat. Genome 52:576–587

    Article  PubMed  CAS  Google Scholar 

  • Wardrop J, Snape J, Powell W, Machray GC (2002) Constructing plant radiation hybrid panels. Plant J 31:223–228

    Article  PubMed  CAS  Google Scholar 

  • Whitworth AJ, Lee JR, Ho VM et al (2008) Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson’s disease factor Pink1 and Parkin. Dis Model Mech 1:168–174

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Mayer KFX, Gundlach H et al (2011) Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Plant Cell 23:1706–1718

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Zhang C, Liu C, Shuxin R, Yan Z (1998) Breeding technology of alloplasmic wheat. Sci China C Life Sci 41:449–458

    Article  PubMed  CAS  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma 13:134

    Article  CAS  Google Scholar 

  • Yu F, Shi J, Zhou J et al (2010) ANK6, a mitochondrial ankyrin repeat protein, is required for male–female gamete recognition in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:22332–22337

    Article  PubMed  CAS  Google Scholar 

  • Zubko MK, Zubko EI, Ruban AV et al (2001) Extensive developmental and metabolic alterations in cybrids Nicotiana tabacum (Hyoscyamus niger) are caused by complex nucleo-cytoplasmic incompatibility. Plant J 25:627–639

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Justin Hegstad and Allen Peckrul for their qualified technical help. This work was supported by funding from the National Science Foundation, Plant Genome Research Program (NSF-PGRP) grant No. IOS-0822100 to SFK. F.M.B was partially supported by Program Master and Back Regione Autonoma della Sardegna and Monsanto Beachell-Borlaug International Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahryar F. Kianian.

Additional information

Monika K. Michalak de Jimènez and Filippo M. Bassi contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(PDF 36.4 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalak de Jimenez, M.K., Bassi, F.M., Ghavami, F. et al. A radiation hybrid map of chromosome 1D reveals synteny conservation at a wheat speciation locus. Funct Integr Genomics 13, 19–32 (2013). https://doi.org/10.1007/s10142-013-0318-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-013-0318-3

Keywords

Navigation