Skip to main content
Log in

Soybean oil biosynthesis: role of diacylglycerol acyltransferases

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol to form seed oil triacylglycerol (TAG). To understand the features of genes encoding soybean (Glycine max) DGATs and possible roles in soybean seed oil synthesis and accumulation, two full-length cDNAs encoding type 1 diacylglycerol acyltransferases (GmDGAT1A and GmDGAT1B) were cloned from developing soybean seeds. These coding sequences share identities of 94 % and 95 % in protein and DNA sequences. The genomic architectures of GmDGAT1A and GmDGAT1B both contain 15 introns and 16 exons. Differences in the lengths of the first exon and most of the introns were found between GmDGAT1A and GmDGAT1B genomic sequences. Furthermore, detailed in silico analysis revealed a third predicted DGAT1, GmDGAT1C. GmDGAT1A and GmDGAT1B were found to have similar activity levels and substrate specificities. Oleoyl-CoA and sn-1,2-diacylglycerol were preferred substrates over vernoloyl-CoA and sn-1,2-divernoloylglycerol. Both transcripts are much more abundant in developing seeds than in other tissues including leaves, stem, roots, and flowers. Both soybean DGAT1A and DGAT1B are highly expressed at developing seed stages of maximal TAG accumulation with DGAT1B showing highest expression at somewhat later stages than DGAT1A. DGAT1A and DGAT1B show expression profiles consistent with important roles in soybean seed oil biosynthesis and accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Banilas G, Karampelias M, Makariti I, Kourti A, Hatzopoulos P (2011) The olive DGAT2 gene is developmentally regulated and shares overlapping but distinct expression patterns with DGAT1. J Exp Bot 62:521–532. doi:10.1093/jxb/erq286

    Article  CAS  PubMed  Google Scholar 

  • Bewley J, Black M (1994) Seeds: physiology of development and germination. Plenum Press, New York

    Google Scholar 

  • Bouvier-Nave P, Benvenise P, Oelkers P, Sturley S, Schaller H (2000) Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. Eur J Biochem 267:85–96

    Article  CAS  PubMed  Google Scholar 

  • Burgal J, Shockey J, Lu CF, Dyer J, Larson T, Graham I, Browse J (2008) Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnol J 6:819–831. doi:10.1111/j.1467-7652.2008.00361.x

    Article  CAS  PubMed  Google Scholar 

  • Carmer SG, Swanson MR (1973) Evaluation of 10 pairwise multiple comparison procedures by Monte-Carlo methods. J Am Stat Assoc 68:66–74

    Article  Google Scholar 

  • Cases S, Smith SJ, Zheng Y, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Erickson SK, Farese RV Jr (1998) Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. P Natl Acad Sci U S A 95:13018–13023

    Article  CAS  Google Scholar 

  • Chaven C, Hymowitz T, Newell C (1982) Chromosome number, oil and fatty acid content of species in the genus Glycine subgenus Glycine. J Am Oil Chem Soc 59:23–25. doi:10.1007/bf02670062

    Article  CAS  Google Scholar 

  • Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci U S A 97:6487–6492

    Article  CAS  PubMed  Google Scholar 

  • Durrett TP, McClosky DD, Tumaney AW, Elzinga DA, Ohlrogge J, Pollard M (2010) A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds. P Natl Acad Sci U S A 107:9464–9469. doi:10.1073/pnas.1001707107

    Article  CAS  Google Scholar 

  • Hatanaka T, Shimizu R, Hildebrand D (2004) Expression of a Stokesia laevis epoxygenase gene. Phytochemistry 65:2189–2196

    Article  CAS  PubMed  Google Scholar 

  • He X, Chen GQ, Lin JT, McKeon TA (2004) Regulation of diacylglycerol acyltransferase in developing seeds of castor. Lipids 39:865–871

    Article  CAS  PubMed  Google Scholar 

  • Hofmann K (2000) A superfamily of membrane-bound O-acyltransferases with implications for Wnt signaling. Trends Biochem Sci 25:111–112. doi:10.1016/s0968-0004(99)01539-x

    Article  CAS  PubMed  Google Scholar 

  • Huang AHC (1992) Oil bodies and oleosins in seeds. Annu Rev Plant Physiol Plant Mol Biol 43:177–200

    Article  CAS  Google Scholar 

  • Ichihara K, Takahashi T, Fujii S (1988) Diacylglycerol acyltransferase in maturing safflower seeds: its influences on the fatty acid composition of triacylglycerol and on the rate of triacylglycerol synthesis. Biochim Biophys Acta 958:125–129

    Article  CAS  PubMed  Google Scholar 

  • Kalscheuer R, Steinbuchel A (2003) A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278:8075–8082

    Article  CAS  PubMed  Google Scholar 

  • Katavic V, Reed DW, Taylor DC, Giblin EM, Barton DL, Zou J, Mackenzie SL, Covello PS, Kunst L (1995) Alteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity. Plant Physiol 108:399–409

    Article  CAS  PubMed  Google Scholar 

  • King A, Nam JW, Han JX, Hilliard J, Jaworski JG (2007) Cuticular wax biosynthesis in petunia petals: cloning and characterization of an alcohol-acyltransferase that synthesizes wax-esters. Planta 226:381–394. doi:10.1007/s00425-007-0489-z

    Article  CAS  PubMed  Google Scholar 

  • Kroon JTM, Wei W, Simon WJ, Slabas AR (2006) Identification and functional expression of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals. Phytochemistry 67:2541–2549

    Article  CAS  PubMed  Google Scholar 

  • Kwanyuen P, Wilson RF (1986) Isolation and purification of diacylglycerol acyltransferase from germinating soybean cotyledons. Biochim Biophys Acta 877:238–245

    Article  CAS  Google Scholar 

  • Kwanyuen P, Wilson RF (1990) Subunit and amino acid composition of diacylglycerol acyltransferase from germinating soybean cotyledons. Biochim Biophys Acta 1039:67–72

    Article  CAS  PubMed  Google Scholar 

  • Lardizabal K, Effertz R, Levering C, Mai J, Pedroso MC, Jury T, Aasen E, Gruys K, Bennett K (2008) Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean. Plant Physiol 148:89–96. doi:10.1104/pp.108.123042

    Article  CAS  PubMed  Google Scholar 

  • Li F, Wu X, Lam P, Bird D, Zheng H, Samuels L, Jetter R, Kunst L (2008) Identification of the wax ester synthase/acyl-coenzyme a:diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol 148:97–107. doi:10.1104/pp.108.123471

    Article  CAS  PubMed  Google Scholar 

  • Li R, Yu K, Hatanaka T, Hildebrand DF (2010a) Vernonia DGATs increase accumulation of epoxy fatty acids in oil. Plant Biotechnol J 8:184–195

    Article  PubMed  Google Scholar 

  • Li R, Yu K, Hildebrand D (2010b) DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids 45:145–157

    Article  PubMed  Google Scholar 

  • Lu C, Xin Z, Ren Z, Miquel M, Browse J (2009) An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc Natl Acad Sci 106:18837–18842. doi:10.1073/pnas.0908848106

    Article  CAS  PubMed  Google Scholar 

  • Mason JM, Arndt KM (2004) Coiled coil domains: stability, specificity, and biological implications. ChemBioChem 5:170–176. doi:10.1002/cbic.200300781

    Article  CAS  PubMed  Google Scholar 

  • McCartney AW, Dyer JM, Dhanoa PK, Kim PK, Andrews DW, McNew JA, Mullen RT (2004) Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J 37:156–173. doi:10.1111/j.1365-313X.2004.01949.x

    Article  CAS  PubMed  Google Scholar 

  • McFie PJ, Stone SL, Banman SL, Stone SJ (2010) Topological orientation of acyl-coa:diacylglycerol acyltransferase-1 (DGAT1) and identification of a putative active site histidine and the role of the N terminus in dimer/tetramer formation. J Biol Chem 285:37377–37387. doi:10.1074/jbc.M110.163691

    Article  CAS  PubMed  Google Scholar 

  • Oelkers P, Behar A, Cromley D, Billheimer J, Sturley S (1998) Characterization of two human genes encoding acyl coenzyme A: cholesterol acyltransferase-related enzymes. J Biol Chem 273:26765–26771

    Article  CAS  PubMed  Google Scholar 

  • Oelkers P, Tinkelenberg A, Erdeniz N, Cromley D, Billheimer JT, Sturley SL (2000) A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast. J Biol Chem 275:15609–15612. doi:10.1074/jbc.C000144200

    Article  CAS  PubMed  Google Scholar 

  • Oelkers P, Cromley D, Padamsee M, Billheimer JT, Sturley SL (2002) The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J Biol Chem 277:8877–8881

    Article  CAS  PubMed  Google Scholar 

  • Ohlrogge JB, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    CAS  PubMed  Google Scholar 

  • Perry H, Harwood J (1993) Changes in the lipid content of developing seeds of Brassica napus. Phytochemistry 32:1411–1415

    Article  CAS  Google Scholar 

  • Rani SH, Krishna THA, Saha S, Negi AS, Rajasekharan R (2010) Defective in cuticular ridges (DCR) of Arabidopsis thaliana, a gene associated with surface cutin formation, encodes a soluble diacylglycerol acyltransferase. J Biol Chem 285:38337–38347. doi:10.1074/jbc.M110.133116

    Article  CAS  PubMed  Google Scholar 

  • Routaboul J-M, Benning C, Bechtold N, Caboche M, Lepiniec L (1999) The TAG1 locus of Arabidopsis encodes for a diacylglycerol acyltransferase. Plant Physiol Biochem 37:831–840

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Enugutti B, Rajakumari S, Rajasekharan R (2006) Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiol 141:1533–1543. doi:10.1104/pp.106.082198

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma JX, Mitros T, Nelson W, Hyten DL, Song QJ, Thelen JJ, Cheng JL, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu SQ, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du JC, Tian ZX, Zhu LC, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183. doi:10.1038/Nature08670

    Article  CAS  PubMed  Google Scholar 

  • Settlage SB, Kwanyuen P, Wilson RF (1998) Relation between diacylglycerol acyltransferase activity and oil concentration in soybean. J Am Oil Chem Soc 75:775–781

    Article  CAS  Google Scholar 

  • Shockey JM, Gidda SK, Chapital DC, Kuan J-C, Dhanoa PK, Bland JM, Rothstein SJ, Mullen RT, Dyer JM (2006) Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell 18:2294–2313. doi:10.1105/tpc.106.043695

    Article  CAS  PubMed  Google Scholar 

  • Stoveken T, Kalscheuer R, Malkus U, Reichelt R, Steinbuchel A (2005) The wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase from Acinetobacter sp strain ADP1: characterization of a novel type of acyltransferase. J Bacteriol 187:1369–1376. doi:10.1128/Jb.187.4.1369-1376.2005

    Article  PubMed  Google Scholar 

  • Taylor DC, Yan Z, Kumar A, Francis T, Giblin EM, Barton DL, Ferrie JR, Laroche A, Shah S, Weiming Z, Snyder CL, Hall L, Rakow G, Harwood JL, Weselake RJ (2009) Molecular modification of triacylglycerol accumulation by over-expression of DGAT1 to produce canola with increased seed oil content under field conditions. Botany 87:533–543

    Article  CAS  Google Scholar 

  • USDA (2012a) In: Service FA (ed) Oilseeds: world markets and trade, FOP 10-09. USDA, Washington, DC

    Google Scholar 

  • USDA (2012b) In: Service ER (ed) World agricultural supply and demand estimates, WASDE-477. USDA, Washington, DC

    Google Scholar 

  • van Heeckeren WJ, Sellers JW, Struhl K (1992) Role of the conserved leucines in the leucine zipper dimerization motif of yeast GCN4. Nucleic Acids Res 20:3721–3724. doi:10.1093/nar/20.14.3721

    Article  PubMed  Google Scholar 

  • Wang Z, Triezenberg SJ, Thomashow MF, Stockinger EJ (2005) Multiple hydrophobic motifs in Arabidopsis CBF1 COOH-terminus provide functional redundancy in trans-activation. Plant Mol Biol 58:543–559

    Article  CAS  PubMed  Google Scholar 

  • Wang H-W, Zhang J-S, Gai J-Y, Chen S-Y (2006) Cloning and comparative analysis of the gene encoding diacylglycerol acyltransferase from wild type and cultivated soybean. Theor Appl Genet 112:1086–1097

    Article  CAS  PubMed  Google Scholar 

  • Yu K, McCracken C Jr, Li R, Hildebrand DF (2006) Diacylglycerol acyltransferase from Vernonia and Stokesia prefer substrates with vernolic acid. Lipids 41:557–566

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Li R, Hatanaka T, Hildebrand D (2008) Cloning and functional analysis of two type 1 diacylglycerol acyltransferases from Vernonia galamensis. Phytochemistry 69:1119–1127

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Fan J, Taylor DC, Ohlrogge JB (2009) DGAT1 and PDAT1 Acyltransferases have overlapping functions in arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell 21:3885–3901. doi:10.1105/tpc.109.071795

    Article  CAS  PubMed  Google Scholar 

  • Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G-Y, Tarczynski MC, Shen B (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Wei Y, Taylor DC (1999) The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyl transferase gene. Plant J 19:645–654

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the United Soybean Board; the Kentucky Science and Engineering Foundation; Ashland, Inc.; and the Consortium for Plant Biotechnology Research as well as National Natural Science Foundation of China (No.30971806). The editorial input of Jessime Kirk and Richard Joost is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hildebrand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Hatanaka, T., Yu, K. et al. Soybean oil biosynthesis: role of diacylglycerol acyltransferases. Funct Integr Genomics 13, 99–113 (2013). https://doi.org/10.1007/s10142-012-0306-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-012-0306-z

Keywords

Navigation