Skip to main content
Log in

Differentiation of the two rice subspecies indica and japonica: a Gene Ontology perspective

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Cultivated rice (Oryza sativa) is comprised of two subspecies: japonica and indica. Polymorphism levels between putative homologues were determined for genes whose japonica homologue had been classified into functional categories using the Gene Ontology (GO) system. Genes were partitioned into below-average and above-average polymorphism groups, and then the set of genes having each GO term was checked for the randomness of its distribution into these polymorphism groups using a series of False Discovery Rate (FDR) tests. The robustness of the conclusions was enhanced by employing different cutoff values and sequence samplings in the FDR tests. Significant nonrandom polymorphism distributions were found for protein-coding sequences in many GO categories. In contrast, a random distribution for nearly all GO terms was seen with intron sequences. These results were extended by measuring the nonsynonymous to synonymous codon usage ratio (dN/dS) using a permutation test, which showed that some above-average polymorphism GO categories also had a high proportion of genes with a dN/dS ratio greater than one, suggesting positive selection on these GO categories during indicajaponica differentiation. An analysis of predominant gene names in the significant GO categories divided them into four functional classes: production of defense-related compounds, cell wall, cell signaling, and transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson JV, Davis DG (2004) Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiol Plant 1203:421–433

    Article  Google Scholar 

  • Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH, Zhu S, Qiu JL, Micheelsen P, Rocher A, Petersen M, Newman MA, Bjorn Nielsen H, Hirt H, Somssich I, Mattsson O, Mundy J (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24:2579–2589

    Article  PubMed  CAS  Google Scholar 

  • Aris-Brosou S (2005) Determinants of adaptive evolution at the molecular level: the extended complexity hypothesis. Mol Biol Evol 22:200–209

    Article  PubMed  CAS  Google Scholar 

  • Asamizu E, Nakamura Y, Sato S, Tabata S (2004) Characteristics of the Lotus japonica gene repertoire deduced from large-scale expressed sequence tag (EST) analysis. Plant Mol Biol 54:405–414

    Article  PubMed  Google Scholar 

  • Ayliffe MA, Lagudah ES (2004) Molecular genetics of disease resistance in cereals. Ann Bot 94:765–773

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hocheberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Bennetzen JL, Coleman C, Liu R, Ma J, Ramakrishna W (2004) Consistent over-estimation of gene number in complex plant genomes. Curr Opin Plant Biol 7:732–736

    Article  PubMed  CAS  Google Scholar 

  • Bergelson J, Kreitman M, Stahl EA, Tian D (2001) Evolutionary dynamics of plant R-genes. Science 292:2281–2285

    Article  PubMed  CAS  Google Scholar 

  • Breslin T, Eden P, Krogh M (2004) Comparing functional annotation analyses with Catmap. BMC Bioinformatics 5:193

    Article  PubMed  CAS  Google Scholar 

  • Buchanan CD, Lim S, Salzman RA, Kagiampakis I, Morishige DT, Weers BD, Klein RR, Pratt LH, Cordonnier-Pratt MM, Klein PE, Mullet JE (2005) Sorghum bicolor's transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 85: 99–720

    Google Scholar 

  • The Carbohydrate-Active enZYmes server (2006). http://www.afmb.cnrs-rs.fr/%7Ecazy/CAZY/index.html

  • Cheng CY, Motohashi R, Ohtsuo E (2003) Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs. Mol Biol Evol 20:67–75

    Article  PubMed  CAS  Google Scholar 

  • Coberly LC, Rausher MD (2003) Analysis of a chalcone synthase mutant in Ipomoea purpurea reveals a novel function for flavonoids: amelioration of heat stress. Mol Ecol 12:1113–1124

    Article  PubMed  CAS  Google Scholar 

  • Cruveiller S, Jabbari K, Clay O, Bernardi G (2004) Incorrectly predicted genes in rice? Gene 333:187–188

    Article  PubMed  CAS  Google Scholar 

  • Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res 14:1812–1819

    Article  PubMed  CAS  Google Scholar 

  • Gamas P, de Carvalho Niebel F, Lescure N, Cullimore J (1996) Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. Mol Plant Microbe Interact 9:233–242

    PubMed  CAS  Google Scholar 

  • García-Olmedo F, Molina A, Alamillo JM, Rodríguez-Palenzuela P (1998) Plant defense peptides. Biopolymers 47:479–491

    Article  PubMed  Google Scholar 

  • Gene Ontology Consortium (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  Google Scholar 

  • Glaszmann JC (1987) Isozymes and classification of Asian rice varieties. Theor Appl Genet 74:21–30

    Article  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1779

    Article  PubMed  CAS  Google Scholar 

  • Han B, Xue Y (2003) Genome-wide intraspecific DNA-sequence variations in rice. Curr Opin Plant Biol 6:134–138

    Article  PubMed  CAS  Google Scholar 

  • Ikehashi H, Araki H (1986) Genetics of F1 sterility in rice. In: Rice genetics. International Rice Research Institute, Los Baños, The Philippines, pp 119–132

  • Ina Y (1996) Patterns of synonymous and nonsynonymous substitutions: an indicator of mechanisms of molecular evolution. J Genet 75:91–115

    Article  CAS  Google Scholar 

  • Jabbari K, Cruveiller S, Clay O, Le Saux J, Bernardi G (2004) The new genes of rice: a closer look. Trends Plant Sci 9:281–285

    Article  PubMed  CAS  Google Scholar 

  • Jia L, Clegg MT, Jiang T (2004) Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified from rice subspecies indica and japonica. Plant Physiol 134:575–585

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Kosaka H, Hara S (1928) On the affinity of rice varieties as shown by fertility of hybrid plants. Bull Sci Fac Agric Kyushu Univ, Fukuoka, Japan, 3:132–147

    Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation, and variation of rice. Plant Mol Biol 35:25–34

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y, Yasunishi A (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–9. (http://cdna01.dna.affrc.go.jp/cDNA/)

    Article  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kranz H, Scholz K, Weisshaar B (2000) c-MYB oncogene-like genes encoding three MYB repeats occur in all major plant lineages. Plant J 21:231–235

    Article  PubMed  CAS  Google Scholar 

  • Kroymann J, Donnerhacke S, Schnabelrauch D, Mitchell-Olds T (2003) Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. Proc Natl Acad Sci USA 100(Suppl 2):14587–14592

    Article  PubMed  CAS  Google Scholar 

  • Lehmann P (2002) Structure and evolution of plant disease resistance genes. J Appl Genet 43:403–414

    PubMed  Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410

    Article  PubMed  CAS  Google Scholar 

  • Mackill DJ (1995) Classifying japonica rice cultivars with RAPD markers. Crop Sci 35:885–894

    Article  Google Scholar 

  • Minglin L, Yuxiu Z, Tuanyao C (2005) Identification of genes up-regulated in response to Cd exposure in Brassica juncea L. Gene 363:151–158

    Article  PubMed  CAS  Google Scholar 

  • Misako K, Kouichi M (2004) Caffeine synthase and related methyltransferases in plants. Front Biosci 9:1833–1842

    PubMed  Google Scholar 

  • Morishima H, Oka HI (1981) Phylogenetic differentiation of cultivated rice, XXII. Numerical evaluation of the indica–japonica differentiation. Jpn J Breed 31:402–413

    Google Scholar 

  • Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ, Fledel-Alon A, Tanenbaum DM, Civello D, White TJ, Sninsky JJ, Adams MD, Cargill M (2005) A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 3:e170

    Article  PubMed  CAS  Google Scholar 

  • Ni J, Colowit PM, Mackill DJ (2002) Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Sci 42:6001–6007

    Article  Google Scholar 

  • Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17:2832–2847

    Article  PubMed  CAS  Google Scholar 

  • Oka HI (1988) Origin of cultivated rice. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  PubMed  CAS  Google Scholar 

  • Rowland O, Ludwig AA, Merrick CJ, Baillieul F, Tracy FE, Durrant WE, Fritz-Layl L, Nekrasov V, Sjolander K, Yoshioka H, Jones JD (2005) Functional analysis of Avr9/Cf-9 rapidly elicited genes identifies a protein kinase, ACIK1, that is essential for full Cf-9-dependent disease resistance in tomato. Plant Cell 171:295–310

    Article  CAS  Google Scholar 

  • Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Guldener U, Sakai T, Wada T, Ishiguro S, Okada K (2000) RPT2, a signal transducer of the phototropic response in Arabidopsis. Plant Cell 12:225–236

    Article  Google Scholar 

  • Sandhu D, Gao H, Cianzio S, Bhattacharyya MK (2004) Deletion of a disease resistance nucleotide-binding-site leucine-rich- repeat-like sequence is associated with the loss of the Phytophthora resistance gene Rps4 in soybean. Genetics 168:2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Shen YJ, Jiang H, Jin JP, Zhang ZB, Xi B, He YY, Wang G, Wang C, Qian L, Li X, Yu QB, Liu HJ, Chen DH, Gao JH, Huang H, Shi TL, Yang ZN (2004) Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol 135:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197. http://www.phrap.org/phredphrap/swat.html

    Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  PubMed  CAS  Google Scholar 

  • Takemoto D, Hayashi M, Doke N, Nishimura M, Kawakita K (1999) Molecular cloning of a defense-response-related cytochrome P450 gene from tobacco. Plant Cell Physiol 40:1232–1242

    PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • van der Biezen EA, Jones JD (1998) The NB-ARC domain: a novel signaling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 26:R226–R227

    Article  Google Scholar 

  • Verica JA, Chae L, Tong H, Ingmire P, He ZH (2003) Tissue-specific and developmentally regulated expression of a cluster of tandemly arrayed cell wall-associated kinase-like kinase genes in Arabidopsis. Plant Physiol 133:1732–1746

    Article  PubMed  CAS  Google Scholar 

  • Weisstein EW (1999) Bonferroni correction. From MathWorld—A Wolfram Web Resource. (http://www.mathworld.wolfram.com/BonferroniCorrection.html)

  • Yamanaka S, Nakamura I, Nakai H, Sato YI (2003) Dual origin of the cultivated rice based on molecular markers of newly collected annual and perennial accessions of wild rice species, Oryza nivara and O. rufipogon. Genet Resour Crop Evol 50:529–538

    Article  CAS  Google Scholar 

  • Yamanaka S, Nakamura I, Watanabe KN, SatoY (2004) Identification of SNPs in the waxy gene among glutinous rice cultivars and their evolutionary significance during the domestication process of rice. Theor Appl Genet 108:1200–1204

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  • Yang Z, Nielsen R (1998) Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol 46:409–418

    Article  PubMed  CAS  Google Scholar 

  • Yang GX, Jan A, Shen SH, Yazaki J, Ishikawa M, Shimatani Z, Kishimoto N, Kikuchi S, Matsumoto H, Komatsu S (2004) Microarray analysis of brassinosteroids- and gibberellin-regulated gene expression in rice seedlings. Mol Genet Genomics 27:468–478

    Article  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C, Zhang J, Zhang Y, Li R, Xu Z, Li S, Li X, Zheng H, Cong L, Lin L, Yin J, Geng J, Li G, Shi J, Liu J, Lv H, Li J, Wang J, Deng Y, Ran L, Shi X, Wang X, Wu Q, Li C, Ren X, Wang J, Wang X, Li D, Liu D, Zhang X, Ji Z, Zhao W, Sun Y, Zhang Z, Bao J, Han Y, Dong L, Ji J, Chen P, Wu S, Liu J, Xiao Y, Bu D, Tan J, Yang L, Ye C, Zhang J, Xu J, Zhou Y, Yu Y, Zhang B, Zhuang S, Wei H, Liu B, Lei M, Yu H, Li Y, Xu H, Wei S, He X, Fang L, Zhang Z, Zhang Y, Huang X, Su Z, Tong W, Li J, Tong Z, Li S, Ye J, Wang L, Fang L, Lei T, Chen C, Chen H, Xu Z, Li H, Huang H, Zhang F, Xu H, Li N, Zhao C, Li S, Dong L, Huang Y, Li L, Xi Y, Qi Q, Li W, Zhang B, Hu W, Zhang Y, Tian X, Jiao Y, Liang X, Jin J, Gao L, Zheng W, Hao B, Liu S, Wang W, Yuan L, Cao M, McDermott J, Samudrala R, Wang J, Wong GK, Yang H (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    Article  PubMed  CAS  Google Scholar 

  • Yuan Q, Ouyang S, Wang A, Zhu W, Maiti R, Lin H, Hamilton J, Haas B, Sultana R, Cheung F, Wortman J, Buell CR (2005) The Institute for Genomic Research Osa1 Rice Genome Annotation Database. Plant Physiol 138:18–26

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Zhang QF, Maroof MAS, Lu TY, Shen BZ (1992) Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis. Theor Appl Genet 83:495–499

    Google Scholar 

  • Zhang W, Peumans WJ, Barre A, Astoul CH, Rovira P, Rouge P, Proost P, Truffa-Bachi P, Jalali AA, Van Damme EJ (2000a) Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants. Planta 2106:970–978

    Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000b) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  PubMed  CAS  Google Scholar 

  • Zhong S, Tian L, Storch KF, Wong WH (2004) Comparative analysis of gene sets in the Gene Ontology space under the multiple hypothesis testing framework. Proc IEEE Comput Syst Bioinform Conf 3:425–435

    Google Scholar 

  • Zhu Q, Ge S (2005) Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytol 167:249–265

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by The National Institutes of Health, grant number 1 R15 GM069408-01. We thank Jacqueline E. Roach for editorial and coaching services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitrick A. Johns.

Electronic supplementary material

Below are the links to the electronic supplementary materials:

10142_2006_36_MOESM1_ESM.pdf

10142_2006_36_MOESM2_ESM.pdf

10142_2006_36_MOESM3_ESM.pdf

10142_2006_36_MOESM4_ESM.pdf

10142_2006_36_MOESM5_ESM.pdf

Supplementary Fig. 1

Summary of FDR experiments for CDS data. GO term numbers and their corresponding names can be found in Table 2. A + above the bar indicates a significant (q-value < = 0.05) excess of genes in the above-average polymorphism group; a - indicates an excess of genes in the below-average- polymorphism group; a 0 indicates a random distribution of genes; a blank symbol indicates that this GO category did not exist or had fewer than 10 genes for the given FDR experiment. Height of bar is proportional to the rank of the q-value for that GO term. Bar shading indicates q-value: solid: q-value <.001; diagonal lines: q-value <.01; vertical lines: q-value <.05; empty: q-value <=.05. From left to right: Bar 1: third level terms: cutoff = mean polymorphisms for CDS (3.49/kb); Bar 2: SWAT-aligned genes, third level terms: cutoff = mean polymorphisms for CDS (3.28/kb); Bar 3: cDNA-derived genes: cutoff = mean polymorphisms for CDS (3.19/kb); Bar 4: complete GO terms: cutoff = mean polymorphisms for CDS (3.49/kb); Bar 5: original plant GO_slim terms: cutoff = mean polymorphisms for CDS (3.49/kb); Bar 6: cutoff = 1.00 polymorphisms/kb; Bar 7: cutoff = 3.00 polymorphisms/kb; Bar 8: cutoff = 5.00 polymorphisms/kb; Bar 9: cutoff = 10.00 polymorphisms/kb ; Bar 10: all CDS (including those without introns); cutoff = 3.49; Bar 11: gene families reduced to 1 member; cutoff = 3.49; Bar 12: all gene family members removed; cutoff = 3.49 (GIF 46 867 kb)

10142_2006_36_Fig1_ESM.png

Supplementary Fig. 2

Summary of FDR experiments for intron data. GO term numbers and their corresponding names can be found in Table 2. A + above the bar indicates a significant (q-value <=0.05) excess of genes in the above-average -polymorphism group; a - indicates an excess of genes in the below-average- polymorphism group; a 0 indicates a random distribution of genes; a blank symbol indicates that this GO category did not exist or had fewer than 10 genes for the given FDR experiment. Height of bar is proportional to the rank of the q-value for that GO term. Bar shading indicates q-value: solid: q-value <.001; diagonal lines: q-value <.01; vertical lines: q-value <.05; empty: q-value >=.05. From left to right: Bar 1: third level terms: cutoff = mean polymorphisms for introns (3.49/kb); Bar 2: SWAT-aligned genes, third level terms: cutoff = mean polymorphisms for introns (4.82/kb); Bar 3: cDNA-derived genes: cutoff = mean polymorphisms for introns (3.88/kb); Bar 4: complete GO terms: cutoff = mean polymorphisms for introns (3.11/kb); Bar 5: original plant GO_slim terms: cutoff = mean polymorphisms for introns (3.11/kb); Bar 6: cutoff = 1.00 polymorphisms/kb; Bar 7: cutoff = 3.00 polymorphisms/kb; Bar 8: cutoff = 5.00 polymorphisms/kb; Bar 9: cutoff = 10.00 polymorphisms/kb ; Bar 10: all CDS (including those without introns); cutoff = 3.11; Bar 11: gene families reduced to 1 member; cutoff = 3.11; Bar 12: all gene family members removed; cutoff = 3.11 (GIF 47 239 kb)

10142_2006_36_Fig2_ESM.png

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johns, M.A., Mao, L. Differentiation of the two rice subspecies indica and japonica: a Gene Ontology perspective. Funct Integr Genomics 7, 135–151 (2007). https://doi.org/10.1007/s10142-006-0036-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-006-0036-1

Keywords

Navigation