Skip to main content
Log in

Single-copy genes define a conserved order between rice and wheat for understanding differences caused by duplication, deletion, and transposition of genes

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The high-quality rice genome sequence is serving as a reference for comparative genome analysis in crop plants, especially cereals. However, early comparisons with bread wheat showed complex patterns of conserved synteny (gene content) and colinearity (gene order). Here, we show the presence of ancient duplicated segments in the progenitor of wheat, which were first identified in the rice genome. We also show that single-copy (SC) rice genes, those representing unique matches with wheat expressed sequence tag (EST) unigene contigs in the whole rice genome, show more than twice the proportion of genes mapping to syntenic wheat chromosome as compared to the multicopy (MC) or duplicated rice genes. While 58.7% of the 1,244 mapped SC rice genes were located in single syntenic wheat chromosome groups, the remaining 41.3% were distributed randomly to the other six non-syntenic wheat groups. This could only be explained by a background dispersal of genes in the genome through transposition or other unknown mechanism. The breakdown of rice–wheat synteny due to such transpositions was much greater near the wheat centromeres. Furthermore, the SC rice genes revealed a conserved primordial gene order that gives clues to the origin of rice and wheat chromosomes from a common ancestor through polyploidy, aneuploidy, centromeric fusions, and translocations. Apart from the bin-mapped wheat EST contigs, we also compared 56,298 predicted rice genes with 39,813 wheat EST contigs assembled from 409,765 EST sequences and identified 7,241 SC rice gene homologs of wheat. Based on the conserved colinearity of 1,063 mapped SC rice genes across the bins of individual wheat chromosomes, we predicted the wheat bin location of 6,178 unmapped SC rice gene homologs and validated the location of 213 of these in the telomeric bins of 21 wheat chromosomes with 35.4% initial success. This opens up the possibility of directed mapping of a large number of conserved SC rice gene homologs in wheat. Overall, only 46.4% of these SC genes code for proteins with known functional domains; the remaining 53.6% have unknown function, and hence, represent an important, but yet, under explored category of genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AGI (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Ahn S, Anderson JA, Sorrells ME, Tanksley SD (1993) Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet 241:483–490

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Scaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acid Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Appels R, Francki M, Chibbar R (2003) Advances in cereal functional genomics. Funct Integr Genomics 3:1–24

    PubMed  CAS  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Ramakrishna W (2002) Numerous small rearrangements of gene content, order, and orientation differentiate grass genomes. Plant Mol Biol 48:821–827

    Article  PubMed  CAS  Google Scholar 

  • Bowers JE, Chapman BE, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–537

    Article  PubMed  CAS  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    Article  PubMed  Google Scholar 

  • Conley EJ et al (2004) A 2600-locus chromosome bin map of wheat homeologous group 2 reveals interstitial gene-rich islands and colinearity with rice. Genetics 168:625–637

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Beales J, Ogihara Y, Doust AN (2005) Comparative sequence analysis of the phytochrome C gene and its upstream region in allopolyploid wheat reveals new data on the evolution of its 3 constituent genomes. Plant Mol Biol 58:625–641

    Article  PubMed  CAS  Google Scholar 

  • Dietrich FS, Voegeli S, Brachat S, Lerch A et al (2004) The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304:304–307

    Article  PubMed  CAS  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Fulton TM, Hoeven RV, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in grasses. Proc Natl Acad Sci U S A 95:1071–1974

    Article  Google Scholar 

  • Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154:15–28

    Article  CAS  Google Scholar 

  • Gill BS, Appels R, Botha-oberholster A, Buell CR, Bennetzen JL, Chalhoub B, Chumley F, Dvorak, J, Iwanaga M, Keller B, Li W, McCombie WR, Ogihara Y, Quitier F, Sasaki T (2004) A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics 168:1087–1096

    Article  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R et al (2002) A draft sequence of rice genome (Oryza sativa L. ssp japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Goldman ASH, Litchen M (2000) Restriction of ectopic recombination by interhomolog interactions during Saccharomyces cerevicae meiosis. Proc Natl Acad Sci U S A 17:9537–9542

    Article  Google Scholar 

  • Gustafson JP, McGuire PE, Qualset CO (2004) Genomic resources: moving wheat into the mainstream in plant genomics. Genetics 168:583–584

    Article  Google Scholar 

  • Hossain KG et al (2004) A chromosome bin map of 2148 expressed sequence tag loci of wheat homeologous group 7. Genetics 168:687–699

    Article  PubMed  CAS  Google Scholar 

  • Huynen MA, van Nimwegen E (1998) The frequency distribution of gene family sizes in complete genomes. Mol Biol Evol 15:583–589

    PubMed  CAS  Google Scholar 

  • IRGSP (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Jiang N, Zirong B, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV (2002) Selection in the evolution of gene duplications. Genome Biol 3:0008.1–0008.9

    Article  Google Scholar 

  • Kumar S, Tamura M, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • La Rota M, Sorrells ME (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Genomics 4:34–46

    Article  PubMed  CAS  Google Scholar 

  • Li W, Zhang P, Fellers JP, Friebe B, Gill BS (2004) Sequence composition, organization, and evolution of the core Triticeae genome. Plant J 40:500–511

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Zhnag X, Pumphrey MO, Stack RW, Gill BS, Anderson JA (2006) Complex microcolinearity among wheat, rice, and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to Fusarium head blight in wheat. Funct Integr Genomics 6(2):83–89

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Faris JD (2006) Macro- and microcolinearity between the genomic region of wheat chromosome 5B containing the Tsn1 gene and the rice genome. Funct Integr Genomics 6(2):90–103

    Article  PubMed  CAS  Google Scholar 

  • Linkiewicz AM et al (2004) A 2500-locus bin map of wheat homeologous group 5 provides insights on gene distribution and colinearity with rice. Genetics 168:665–676

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicated genes. Science 290:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Mickelson-Young L, Endo TR, Gill BS (1995) A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes. Theor Appl Genet 90:1007–1011

    Article  CAS  Google Scholar 

  • Miftahudin, Ross K, Ma XF et al (2004) Analysis of expressed sequenced tag loci on wheat chromosome group 4. Genetics 168:651–663

    Article  PubMed  CAS  Google Scholar 

  • Moore W, Devos KM, Z. Wang Z, Gale MD (1995) Grasses line up and form a circle. Curr Biol 5:737–739

    Article  PubMed  CAS  Google Scholar 

  • Munkvold JD et al (2004) Group 3 chromosome bin maps of wheat and their relationship to rice chromosome 1. Genetics 168:639–650

    Article  PubMed  CAS  Google Scholar 

  • Muse SV (2000) Examining rates and patterns of nucleotide substitution in plants. Plant Mol Biol 42:25–43

    Article  PubMed  CAS  Google Scholar 

  • Nandi HK (1936) The chromosome morphology, secondary association, and origin of cultivated rice. J Genet 33:315–336

    Article  Google Scholar 

  • Naranjo T, Roca P, Goicoechea PG, Giraldez R (1987) Arm homoeology of wheat and rye chromosomes. Genome 29:873–882

    Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin Heidelberg New York, p 160

    Google Scholar 

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (AegilopsTriticum) group. Plant Cell 13:1735–1747

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101(26):9903–9908

    Article  PubMed  CAS  Google Scholar 

  • Peng JH et al (2004) Chromosome bin map of expressed sequence tags in homoeologous group 1 of hexaploid wheat and homoeology with rice and Arabidopsis. Genetics 168:609–623

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorak J, Linkiewicz AM, Ratnasri A et al (2004) A chromosome bin map of 16000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:710–712

    Article  CAS  Google Scholar 

  • Randhawa HS et al (2004) Deletion mapping of homeologous group 6-specific wheat expressed sequence tags. Genetics 168:677–699

    Article  PubMed  CAS  Google Scholar 

  • Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Matsumoto T, Antonio BA, Nagamura Y (2005) From mapping to sequencing, post sequencing and beyond. Plant Cell Physiol 46(I):3–13

    Article  PubMed  CAS  Google Scholar 

  • Singh NK, Raghuvanshi S, Srivastava SK, Gaur A, Pal AK, Dalal V, Singh A, Ghazi IA et al (2004) Sequence analysis of the long arm of rice chromosome 11 for rice–wheat synteny. Funct Integr Genomics 4:102–117

    Article  PubMed  CAS  Google Scholar 

  • Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci U S A 92:7719–7723

    Article  PubMed  CAS  Google Scholar 

  • Song R, Llaca V, Messing J (2002) Mosaic organization of orthologous sequences in grass genomes. Genome Res 12:1549–1555

    Article  PubMed  CAS  Google Scholar 

  • Sorrells ME, Rota ML, Bermudez-Kandianis CE et al (2003) Comparative DNA analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed  CAS  Google Scholar 

  • The Rice Chromosomes 11 and 12 Sequencing Consortia (2005) The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biol 3:20

    Article  CAS  Google Scholar 

  • Vandepoele K, Simillion C, Van de Peer Y (2003) Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15:2192–2202

    Article  PubMed  CAS  Google Scholar 

  • Yu J et al (2002) A draft sequence of rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H et al (2005) Genomes of Oryza sativa: a history of duplications. PloS Biol 3(2):e38

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Indian Council of Agricultural Research and the Department of Biotechnology, Government of India. We are thankful to NCBI, Softberry.com, USDA, and RGP for making their databases and genome analysis tools publicly available. We are grateful to Dr. Dave Matthews for his help with wheat EST data sets and Drs. Bikram Gill and Li Qi for providing kindly the DNA samples of wheat deletion lines. A summary of this work was presented at the 5th International Rice Genetics Symposium in Manila.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagendra K. Singh.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Fig. S1

(XLS 609 kb)

Fig. S2

(XLS 799 kb)

Fig. S3

(XLS 849 kb)

Table S1A-E

(DOC 260 kb)

Table S2

(DOC 673 kb)

Table S3A,B

(XLS 937 kb)

Table S4A,B

(DOC 837 kb)

Table S5A-F

(XLS 41 kb)

Table S6A,B

(XLS 152 kb)

Table S7

(XLS 77 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, N.K., Dalal, V., Batra, K. et al. Single-copy genes define a conserved order between rice and wheat for understanding differences caused by duplication, deletion, and transposition of genes. Funct Integr Genomics 7, 17–35 (2007). https://doi.org/10.1007/s10142-006-0033-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-006-0033-4

Keywords

Navigation