Skip to main content
Log in

Activation tagging in plants: a tool for gene discovery

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

A significant limitation of classical loss-of-function screens designed to dissect genetic pathways is that they rarely uncover genes that function redundantly, are compensated by alternative metabolic or regulatory circuits, or which have an additional role in early embryo or gametophyte development. Activation T-DNA tagging is one approach that has emerged in plants to help circumvent these potential problems. This technique utilises a T-DNA sequence that contains four tandem copies of the cauliflower mosaic virus (CaMV) 35S enhancer sequence. This element enhances the expression of neighbouring genes either side of the randomly integrated T-DNA tag, resulting in gain-of-function phenotypes. Activation tagging has identified a number of genes fundamental to plant development, metabolism and disease resistance in Arabidopsis. This review provides selected examples of these discoveries to highlight the utility of this technology. The recent development of activation tagging strategies for other model plant systems and the construction of new more sophisticated vectors for the generation of conditional alleles are also discussed. These recent advances have significantly expanded the horizons for gain-of-function genetics in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a, b
Fig. 2a–e
Fig. 3a–c

Similar content being viewed by others

References

  • Anderson KV (1998) Pinning down positional information: dorsal-ventral polarity in the Drosophila embryo. Cell 95:439–442

    CAS  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    PubMed  Google Scholar 

  • Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JDG, Parker JE (2002) Science 295:2077–2080

    CAS  PubMed  Google Scholar 

  • Bartel B (1997) Auxin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 48:51–64

    Article  CAS  PubMed  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci 316:1194–1199

    CAS  Google Scholar 

  • Bender A, Pringle JR (1989) Multicopy suppression of the cdc24 budding defect in yeast by CDC24 and three newly identified genes including the ras-related gene RSR1. Proc Natl Acad Sci USA 86:9976–9980

    CAS  PubMed  Google Scholar 

  • Benfey PN, Chua N-H (1989) The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J 8:2195–2202

    CAS  Google Scholar 

  • Bisgrove SR, Simonich MT, Smith NM, Sattler A, Innes RW (1994) A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell 6:927–973

    Article  CAS  PubMed  Google Scholar 

  • Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Vanonckelen H, Vanmontagu M, Inze D (1995) Plant Cell 7:1405–1419

    CAS  PubMed  Google Scholar 

  • Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2393

    CAS  PubMed  Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong XN (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592

    Google Scholar 

  • Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111:671–678

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Chen ZX, Ricigliano J, Klessig DF (1995) Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid and salicylic-acid, inhibit catalyse activity in tobacco. Proc Natl Acad Sci USA 92:7143–7147

    CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    CAS  PubMed  Google Scholar 

  • Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000

    CAS  PubMed  Google Scholar 

  • Delaney TP, Friedrich L, Ryals JA (1995) Arabidopsis signal-transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci USA 92:6602–6606

    CAS  PubMed  Google Scholar 

  • Delarue M, Prinsen E, van Onckelen H, Caboche M, Bellini C (1998) sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. Plant J 14:603–611

    Article  CAS  PubMed  Google Scholar 

  • Fauth M, Merten A, Hahn MG, Jeblick W, Kauss H (1996) Competence for elicitation of H2O2 in hypocotyls of cucumber is induced by breaching the cuticle and is enhanced by salicylic acid. Plant Physiol 110:347–354

    CAS  PubMed  Google Scholar 

  • Fits L van der, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of primary and secondary metabolism. Science 289:295–297

    Article  PubMed  Google Scholar 

  • Fladung M, Ahuja MR (1997) Excision of the maize transposable element Ac in periclinal chimeric leaves of 35S-Ac-rolC transgenic aspen-populus. Plant Mol Biol 33:1097–1103

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J, Rogers EE, Ausubel FM (1996) Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143:973–982

    Google Scholar 

  • Goff et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. Japonica). Science 296:92–100

    CAS  PubMed  Google Scholar 

  • Grant JJ, Yun BW, Loake GJ (2000) Oxidative burst and cognate redox signaling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. Plant J 24:569–582

    CAS  PubMed  Google Scholar 

  • Grant JJ, Chini A, Basu D, Loake GJ (2003) Targeted activation tagging of ADR1, a NBS-LRR gene, conveys resistance to virulent pathogens. Mol Plant Microbe Interact 16:669–680

    CAS  PubMed  Google Scholar 

  • Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li W-H (2003) Role of duplicate genes in genetic robustness against null mutations. Nature 421:63–66

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto T, Yamada Y (1994) Alkaloid biogenesis: molecular aspects. Annu Rev Plant Physiol Plant Mol Biol 45:257–285

    CAS  Google Scholar 

  • Ishige F, Takaichi M, Foster R, Chua N-H, Oeda K (1999) A G-box motif (GCCACGTGCC) tetramer confers high-level constitutive expression in dicot and monocot plants. Plant J 18:443–448

    Article  CAS  Google Scholar 

  • Jeong D-H, An S, Kang H-G, Moon S, Han J-J, Park S, Lee HS, An K, An G (2002) T-DNA insertion mutagenesis for activation tagging in rice. Plant Physiol 130:1636–1644

    Article  CAS  PubMed  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  CAS  PubMed  Google Scholar 

  • King JJ, Stimart DP, Fisher RH, Bleeker AB (1995) A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 7:2023–2037

    Article  CAS  PubMed  Google Scholar 

  • Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Avres J, Weisshaar B (1998) Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J 16:263–276

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Fladung M (2003) Somatic mobility of the maize element Ac and its utility for gene tagging in aspen. Plant Mol Biol 51:643–650

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Jeon JS, Jung KH, An G (1999) Binary vectors for efficient transformation of rice. J Plant Biol 42:310–316

    CAS  Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signaling transduction. Cell 90:929–938

    PubMed  Google Scholar 

  • Li J, Lease KA, Tax FE, Walker JC (2001) BRS1, a serine carboxypepetidase, regulates BRI1 signalling in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:5916–5921

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wen J, Lease KA, Doke JT, Tax E, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signalling. Cell 110:213–222

    CAS  PubMed  Google Scholar 

  • Liu Y-G, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    CAS  PubMed  Google Scholar 

  • Mackey D, Holt BF, Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:743–754

    CAS  PubMed  Google Scholar 

  • Mangelsdorf et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    CAS  PubMed  Google Scholar 

  • Mathews et al (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15:1689–1703

    Article  CAS  PubMed  Google Scholar 

  • Matsuhara S, Jingu F, Takahashi T, Komeda Y (2000) Heat-shock tagging: a simple method for expression and isolation of plant genome DNA flanked by T-DNA insertions. Plant J 22:79–86

    Article  CAS  PubMed  Google Scholar 

  • Mayer KF, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T (1998) Role of WUSHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815

    CAS  PubMed  Google Scholar 

  • Meissner R, Jacobson Y, Melamed S, Levyatuv S, Shalev G, Ashri A, Elkind Y, Levy A (1997) A new model system for tomato genetics. Plant J 12:1465–1472

    Article  CAS  Google Scholar 

  • Miklos GL, Rubin GM (1996) The role of the genome project in determining gene function: insights from model organisms. Cell 86:521–529

    Article  CAS  PubMed  Google Scholar 

  • Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds? Trends Plant Sci 3:212–217

    Article  Google Scholar 

  • Mur LAJ, Naylor G, Warner SAJ, Sugars JM, White RF, Draper J (1996) Salicylic acid potentiates defence gene expression in tissue exhibiting acquired resistance to pathogen attack. Plant J 9:559–571

    CAS  Google Scholar 

  • Murray SL, Thomson C, Chini A, Read NC, Loake GJ (2002) Characterization of a novel defense-related Arabidopsis mutant, cir1, isolated by luciferase imaging. Mol Plant Microbe Interact 15:557–566

    CAS  PubMed  Google Scholar 

  • Normandy J, Bartel B (1999) Redundancy as a way of life—IAA metabolism. Curr Opin Plant Biol 2:207–213

    Google Scholar 

  • Odell JT, Nagy F, Chua N-H (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    CAS  PubMed  Google Scholar 

  • Ohtsuki S, Levine M, Cai HN (1998) Different core promoters possess distinct regulatory activities in the Drosophila embryo. Genes Dev 12:547–556

    CAS  PubMed  Google Scholar 

  • Okubara PA, Andersen PA, Oswaldo E, Michelmore RW (1994) Mutants of downy mildew resistance in Lactuca sativa (lettuce). Genetics 137:867–874

    CAS  PubMed  Google Scholar 

  • Quattrocchio F, Wing J, van der Woude K, Souer E, van de Vetten N, Mol J, Koes R (1999) Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell 11:1433–1444

    CAS  PubMed  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2-/EREBP family of plant transcription factors. Biol Chem 379:633–646

    CAS  PubMed  Google Scholar 

  • Romero I, Fuertes A, Benito MJ, Malpica JM, Leyva A, Paz-Ares J (1998) More than 80 R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana. Plant J 14:273–284

    Article  CAS  PubMed  Google Scholar 

  • Rorth P (1996) A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci USA 93:12418–12422

    Article  PubMed  Google Scholar 

  • Ross-Macdonald et al (1999) Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402:413–418

    CAS  PubMed  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    CAS  Google Scholar 

  • Ryazonov AG, Ward MD, Mendola CE, Pavur KS, Dorovkov MV, Wiedmann M, Erdjument-Bromage H, Tempst P, Parmer TG, Prostko CR, Germino FJ, Hait WN (1997) Identification of a new class of protein kinase represented by eukaryotic elongation factor-2-kinase. Proc Natl Acad Sci USA 94:4884–4889

    Article  PubMed  Google Scholar 

  • Schmitz G, Theres K (1994) A self-stabilising Ac derivative and its potential for transposon tagging. Plant J 6:781–786

    Article  CAS  PubMed  Google Scholar 

  • Shah J, Tsui F, Klessig DF (1997) Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant Microbe Interact 1:69–78

    Google Scholar 

  • Shirasu K, Nakajima H, Rajasekhar VK, Dixon RA, Lamb C (1997) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9:261–270

    Google Scholar 

  • Spena A, Aalen RB, Schulze SC (1989) Cell-autonomous behaviour of the rolC gene of Agrobacterium rhizogenes during leaf development: a visible assay for transposon excision in transgenic plants. Plant Cell 1:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Sulston et al (1992) The C. elegans genome sequence project: a beginning. Nature 356:37–41

    Article  PubMed  Google Scholar 

  • Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams W, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4:645–656

    CAS  PubMed  Google Scholar 

  • Warren RF, Merritt PM, Holub E, Innes RW (1999) Identification of three putative signal transduction genes involved in R gene-specified disease resistance in Arabidopsis. Genetics 152:401–412

    Google Scholar 

  • Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013

    CAS  PubMed  Google Scholar 

  • Wilson K, Long D, Swinburne J, Coupland G (1996) A dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETELA2. Plant Cell 8:659–671

    CAS  PubMed  Google Scholar 

  • Xia Y, Suzuki H, Borevitz J, Blount J, Guo Z, Patel K, Dixon RA, Lamb C (2004) An extracellular aspartic protease functions in Arabidopsis disease resistance signalling. EMBO J 23:980–988

    Article  CAS  PubMed  Google Scholar 

  • Yu et al (2002) A draft sequence of the rice genome (Oryza sativa L. spp. Indica). Science 296:79–92

    CAS  PubMed  Google Scholar 

  • Zhao Y, Christensen SK, Frankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  CAS  PubMed  Google Scholar 

  • Zuo Z, Niu Q-W, Chua N-H (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24:265–273

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Niu Q-W, Frugis G, Chua N-H (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Helen Tani was supported by a grant from the Institute of State Scholarships (IKY), Pedro Nurmberg was supported by the CNPq and Andrea Chini was supported by a scholarship from the Darwin Trust. Eleanor Gilroy is the recipient of a BBSRC CASE studentship. G.J.L. is the recipient of BBSRC awards 15/P16595 and 15/P20067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary J. Loake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tani, H., Chen, X., Nurmberg, P. et al. Activation tagging in plants: a tool for gene discovery. Funct Integr Genomics 4, 258–266 (2004). https://doi.org/10.1007/s10142-004-0112-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-004-0112-3

Keywords

Navigation