Skip to main content
Log in

Comparative organization of wheat homoeologous group 3S and 7L using wheat-rice synteny and identification of potential markers for genes controlling xanthophyll content in wheat

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

EST and genomic DNA sequencing efforts for rice and wheat have provided the basis for interpreting genome organization and evolution. In this study we have used EST and genomic sequencing information and a bioinformatic approach in a two-step strategy to align portions of the wheat and rice genomes. In the first step, wheat ESTs were used to identify rice orthologs and it was shown that wheat 3S and rice 1 contain syntenic units with intrachromosomal rearrangements. Further analysis using anchored rice contiguous sequences and TBLASTX alignments in a second alignment step showed interruptions by orthologous genes that map elsewhere in the wheat genome. This indicates that gene content and order is not as conserved as large chromosomal blocks as previously predicted. Similarly, chromosome 7L contains syntenic units with rice 6 and 8 but is interrupted by combinations of intrachromosomal and interchromosomal rearrangements involving syntenic units and single gene orthologs from other rice chromosome groups. We have used the rice sequence annotations to identify genes that can be used to develop markers linked to biosynthetic pathways on 3BS controlling xanthophyll production in wheat and thus involved in determining flour colour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Appels R, Francki M, Chibbar R (2003) Advances in cereal functional genomics. Funct Integr Genomics 3:1–24

    CAS  PubMed  Google Scholar 

  • Caldelari D, Sternberg H, Rodriguez-Concepcion M, Grinssen W, Yalovsky S(2001) Efficient prenylation by a plant geranylgeranyl transferase-I requires a function CaaL box motif and a proximal polybasic domain. PlantPhysiol 126:1416–1429

    Article  CAS  Google Scholar 

  • Chen M, San Miguel P, De Oliveira AC, Woo S-S, Zhang H, Wing RA, Bennetzen JL (1997) Microcollinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. Proc Natl Acad Sci USA 94:3431–3435

    CAS  PubMed  Google Scholar 

  • Chen M, San Miguel P, Bennetzen JL (1998) Sequence organization and conservation in the sh2/a1-homologous regions in sorghum and rice. Genetics 148:435–443

    CAS  PubMed  Google Scholar 

  • Civardi L, Xia Y, Edwards KJ, Schnable PS, Nikolau BJ (1994) The relationship between genetic and physical distances in the cloned a1-sh2 interval of the Zea maysL. genome. Proc Natl Acad Sci USA 91:8268–8272

    CAS  PubMed  Google Scholar 

  • Devos KM, Gale MD (1997) Comparative genetics in the grasses. Plant Mol Biol 35:3–15

    CAS  PubMed  Google Scholar 

  • Deynze AE Van, Nelson JC, Yglesias ES, Harrington SE, Braga DP, McCouch SR, Sorrells ME (1995) Comparative mapping in grasses. Wheat relationships. Mol Genet Genomics 248:744–754

    Google Scholar 

  • Francki M, Appels R (2002) Wheat functional genomics and engineering crop improvement. Genome Biol 3:1013.1–1013.5

    Article  Google Scholar 

  • Fujimara K, Tanaka K, Nakano A, Toh-e A (1994) The Saccharomycescerevisiae MS14 gene encodes the yeast counterpart of component A of Rab geranylgeranyltransferase. J Biol Chem 269:9205–9212

    PubMed  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    CAS  PubMed  Google Scholar 

  • Li W, Gill BS (2002) The collinearity of the Sh2/A1 orthologous region in rice, sorghum and maize is interrupted and accompanied by genome expansion in the triticeae. Genetics 160:1153–1162

    CAS  PubMed  Google Scholar 

  • Long SB, Casey PJ, Beese LS (1998) Cocrystal structure of protein farnesyltransferase complexed with a farnesyl diphosphate substrate. Biochemistry 37:9612–9618

    Article  CAS  PubMed  Google Scholar 

  • Mares DJ, Campbell AW (2001) Mapping components of flour and noodle colour in Australian wheat. Aust J Agric Res 52:1297–1309

    Article  CAS  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution. Curr Biol 5:737–739

    CAS  PubMed  Google Scholar 

  • Moore G, Aragón-Alcaide L, Roberts M, Reader S, Miller T, Foote T (1997) Are rice chromosomes components of a holocentric chromosome ancestor? Plant Mol Biol 35:17–23

    Article  CAS  PubMed  Google Scholar 

  • Park HW, Boduluri SR, Moomaw JF, Casey PJ, Beese LS (1997) Crystal structure of protein farnesyltransferse at 2.25 angstrom resolution. Science 275:1800–1804

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Echalier B, Friebe B, Gill BS (2003) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genomics 3:39–55

    CAS  PubMed  Google Scholar 

  • Smilde WD, Haluškova J, Sasaki T, Graner A (2001) New evidence for the synteny of rice chromosome 1 and barley chromosome 3H from rice expressed sequence tags. Genome 44:361–367

    CAS  PubMed  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin, Mahmoud A, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NL, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi DW, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    CAS  PubMed  Google Scholar 

  • Spielmeyer W, Lagudah E (2003) Rice genome sequence expedites fine mapping of durable, broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum). Proceedings of the Tenth International Wheat Genetics Symposium, Paestum, Italy, pp 414–416

  • Strickland CL, Windsor WT, Syto R, Wang L, Bond R, Wu Z, Schwartz J, Le Hung V, Beese LS, Weber PC (1998) Crystal structure of farnesyl protein transferase complexed with a CaaX peptide and farnesyl diphosphate analogue. Biochemistry 37:16601–16611

    Article  CAS  PubMed  Google Scholar 

  • Sutton T, Whitford R, Baumann U, Dong CM, Able J, Langridge P (2003)The Ph2 pairing homoeologous locus of wheat (Triticum aestivum):identification of candidate meiotic genes using a comparative genetics approach. Plant J 36:443–456

    Article  CAS  PubMed  Google Scholar 

  • Van Deynze AE, Nelson JC, Yglesias ES, Harrington SE, Braga DP, McCouch SR, Sorrells MS (1995) Comparative mapping in grasses. Wheat relationship. Mol Gen Genet 248:744–754

    PubMed  Google Scholar 

  • Yao H, Zhou Q, Li J, Smith H, Yandeau M, Nikolau BJ, Schnable PS (2002) Molecular characterization of meiotic recombination across the 140-kbp mulitgenic a1-sh2 interval of maize. Proc Natl Acad Sci USA 99:6157–6162

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK-S, Li S, Liu B et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. Indica). Science 296:79–91

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Francki.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francki, M., Carter, M., Ryan, K. et al. Comparative organization of wheat homoeologous group 3S and 7L using wheat-rice synteny and identification of potential markers for genes controlling xanthophyll content in wheat. Funct Integr Genomics 4, 118–130 (2004). https://doi.org/10.1007/s10142-004-0110-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-004-0110-5

Keywords

Navigation