Skip to main content

Advertisement

Log in

Isolation and Characterization of Fish-Gut Bacillus spp. as Source of Natural Antimicrobial Compounds to Fight Aquaculture Bacterial Diseases

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Aquaculture is responsible for more than 50% of global seafood consumption. Bacterial diseases are a major constraint to this sector and associated with misuse of antibiotics, pose serious threats to public health. Fish-symbionts, co-inhabitants of fish pathogens, might be a promising source of natural antimicrobial compounds (NACs) alternative to antibiotics, limiting bacterial diseases occurrence in aquafarms. In particular, sporeforming Bacillus spp. are known for their probiotic potential and production of NACs antagonistic of bacterial pathogens and are abundant in aquaculture fish guts. Harnessing the fish-gut microbial community potential, 172 sporeforming strains producing NACs were isolated from economically important aquaculture fish species, namely European seabass, gilthead seabream, and white seabream. We demonstrated that they possess anti-growth, anti-biofilm, or anti-quorum-sensing activities, to control bacterial infections and 52% of these isolates effectively antagonized important fish pathogens, including Aeromonas hydrophila, A. salmonicida, A. bivalvium, A. veronii, Vibrio anguillarum, V. harveyi, V. parahaemolyticus, V. vulnificus, Photobacterium damselae, Tenacibaculum maritimum, Edwardsiela tarda, and Shigella sonnei. By in vitro quantification of sporeformers’ capacity to suppress growth and biofilm formation of fish pathogens, and by assessing their potential to interfere with pathogens communication, we identified three promising candidates to become probiotics or source of bioactive molecules to be used in aquaculture against bacterial aquaculture diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

16S rRNA gene sequences of fish isolates described in this manuscript have been deposited in GenBank with the accession numbers provided in Table 2. Authors confirm that all relevant data are included in the article.

References

  • Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR (2018) Bacterial quorum sensing and microbial community interactions. mBio 9:e02331-17.

  • Abriouel H, Franz CM, Ben Omar N, Galvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232

    Article  CAS  PubMed  Google Scholar 

  • An J, Zhu W, Liu Y, Zhang X, Sun L, Hong P, Wang Y, Xu C, Xu D, Liu H (2015) Purification and characterization of a novel bacteriocin CAMT2 produced by Bacillus amyloliquefaciens isolated from marine fish Epinephelus areolatus. Food Control 51:278–282

    Article  CAS  Google Scholar 

  • Andreoni F, Magnani M (2014) Photobacteriosis: prevention and diagnosis. J Immunol Res 2014:793817

    Article  PubMed  PubMed Central  Google Scholar 

  • Askarian F, Zhou Z, Olsen RE, Sperstad S, Ringø E (2012) Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquac 326–329:1–8

    Article  CAS  Google Scholar 

  • Avendaño-Herrera R, Toranzo AE, Magariños B (2006) Tenacibaculosis infection in marine fish caused by Tenacibaculum maritimum: a review. Dis Aquat Organ

  • Baldwin TJ, Newton JC (1993) Pathogenesis of enteric septicemia of channel catfish, caused by Edwardsiella ictaluri: bacteriologic and light and electron microscopic findings. J Aquat Anim Health 5:189–198

    Article  Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79

    Article  PubMed  Google Scholar 

  • Banerjee G, Nandi A, Ray AK (2016) Assessment of hemolytic activity, enzyme production and bacteriocin characterization of Bacillus subtilis LR1 isolated from the gastrointestinal tract of fish. Arch Microbiol: 30 71:255–266

    Google Scholar 

  • Banerjee G, Ray AK (2017) The advancement of probiotics research and its application in fish farming industries. Res Vet Sci 115:66–77

    Article  CAS  PubMed  Google Scholar 

  • Barbosa TM, Serra CR, La Ragione RM, Woodward MJ, Henriques AO (2005) Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl Environ Microbiol 71:968–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartkova S, Kokotovic B, Dalsgaard I (2017) Infection routes of Aeromonas salmonicida in rainbow trout monitored in vivo by real-time bioluminescence imaging. J Fish Dis 40:73–82

    Article  CAS  PubMed  Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    Article  CAS  PubMed  Google Scholar 

  • Cabello FC, Godfrey HP, Buschmann AH, Dölz HJ (2016) Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect Dis 16:127–133

    Article  Google Scholar 

  • Canny GO, Mccormick BA (2008) Bacteria in the intestine, helpful residents or enemies from within? Infect Immun 76:3360–3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, He S, Zhou Z, Zhang M, Mao W, Zhang H, Yao B (2012) Orally administered thermostable N-acyl homoserine lactonase from Bacillus sp. strain AI96 attenuates Aeromonas hydrophila infection in zebrafish. Appl Environ Microbiol 78:1899–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caruffo M, Navarrete N, Salgado O, Díaz A, López P, García K, Feijóo CG, Navarrete P (2015) Potential probiotic yeasts isolated from the fish gut protect zebrafish (Danio rerio) from a Vibrio anguillarum challenge. Front Microbiol 6.

  • Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J (2019) Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front Microbiol 10.https://doi.org/10.3389/fmicb.2019.00302

  • Chen Y, Li J, Xiao P, Li GY, Yue S, Huang J, Zhu WY, Mo ZL (2016) Isolation and characterization of Bacillus spp. M001 for potential application in turbot (Scophthalmus maximus L.) against Vibrio anguillarum. Aquacult Nutr 22:374–381

    Article  Google Scholar 

  • Chopra L, Singh G, Choudhary V, Sahoo DK (2014) Sonorensin: an antimicrobial peptide, belonging to the heterocycloanthracin subfamily of bacteriocins, from a new marine isolate, Bacillus sonorensis MT93. Appl Environ Microbiol 80:2981–2990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chowdhary PK, Keshavan N, Nguyen HQ, Peterson JA, Gonzalez JE, Haines DC (2007) Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines. Biochem 46:14429–14437

    Article  CAS  Google Scholar 

  • Chu W, Mclean RJ (2016) Quorum signal inhibitors and their potential use against fish diseases. J Aquat Anim Health 28:91–96

    Article  CAS  PubMed  Google Scholar 

  • Chu W, Zhou S, Zhu W, Zhuang X (2014) Quorum quenching bacteria Bacillus sp QSI-1 protect zebrafish (Danio rerio) from Aeromonas hydrophila infection. Sci Rep 4:5446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clsi (2013) Clinical and Laboratory Standards Institute

  • Cutting SM (2011) Bacillus probiotics. Food Microbiol 28:214–220

    Article  PubMed  Google Scholar 

  • Dallaire-Dufresne S, Tanaka KH, Trudel MV, Lafaille A, Charette SJ (2014) Virulence, genomic features, and plasticity of Aeromonas salmonicida subsp. salmonicida, the causative agent of fish furunculosis. Vet Microbiol 169:1–7

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt T (2013) Virulence mechanisms of bacterial aquaculture pathogens and antivirulence therapy for aquaculture. Rev Aquacult 6:100–114

    Article  Google Scholar 

  • Diaz-Rosales P, Chabrillon M, Morinigo MA, Balebona MC (2003) Survival against exogenous hydrogen peroxide of Photobacterium damselae subsp. piscicida under different culture conditions. J Fish Dis 26:305–308

    Article  CAS  PubMed  Google Scholar 

  • Dimitroglou A, Merrifield DL, Carnevali O, Picchietti S, Avella M, Daniels C, Guroy D, Davies SJ (2011) Microbial manipulations to improve fish health and production–a Mediterranean perspective. Fish Shellfish Immunol 30:1–16

    Article  CAS  PubMed  Google Scholar 

  • Dobson A, Cotter PD, Ross RP, Hill C (2012) Bacteriocin production: a probiotic trait? Appl Environ Microbiol 78:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong YH, Xu JL, Li XZ, Zhang H (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci 97:3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance, European Food Safety Authority Panel on Additives and Products or Substances used in Animal Feed (EFSA-FEEDAP). EFSA J 10:2740

    Google Scholar 

  • Fey PD (2010) Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections? Curr Opin Microbiol 13:610–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Micro 14:563–575

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations, W.H.O (2001) Report of the joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Córdoba, Argentina

    Google Scholar 

  • Frans I, Michiels CW, Bossier P, Willems KA, Lievens B, Rediers H (2011) Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention. J Fish Dis 34:643–661

    Article  CAS  PubMed  Google Scholar 

  • Gao XY, Liu Y, Miao LL, Li EW, Sun GX, Liu Y, Liu P (2017) Characterization and mechanism of anti-Aeromonas salmonicida activity of a marine probiotic strain, Bacillus velezensis V4. Appl Microbiol Biotechnol 101:3759–3768

    Article  CAS  PubMed  Google Scholar 

  • Gauthier DT (2015) Bacterial zoonoses of fishes: a review and appraisal of evidence for linkages between fish and human infections. Vet J 203:27–35

    Article  PubMed  Google Scholar 

  • Grandclement C, Tannieres M, Morera S, Dessaux Y, Faure D (2016) Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 40:86–116

    Article  CAS  PubMed  Google Scholar 

  • Grassi L, Maisetta G, Esin S, Batoni G (2017) Combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms. Front Microbiol 8:2409–2409

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo X, Chen DD, Peng KS, Cui ZW, Zhang XJ, Li S, Zhang YA (2016) Identification and characterization of Bacillus subtilis from grass carp (Ctenopharynodon idellus) for use as probiotic additives in aquatic feed. Fish Shellfish Immunol 52:74–84

    Article  CAS  PubMed  Google Scholar 

  • Hai NV (2015) The use of probiotics in aquaculture. J Appl Microbiol 119:917–935

    Article  CAS  PubMed  Google Scholar 

  • Hamza F, Kumar AR, Zinjarde S (2016) Antibiofilm potential of a tropical marine Bacillus licheniformis isolate: role in disruption of aquaculture associated biofilms. Aquac Res 47:2661–2669

    Article  CAS  Google Scholar 

  • Hamza F, Kumar AR, Zinjarde S (2018) Efficacy of cell free supernatant from Bacillus licheniformis in protecting Artemia salina against Vibrio alginolyticus and Pseudomonas gessardii. Microb Pathog 116:335–344

    Article  PubMed  Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong HA, Duc LH, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835

    Article  CAS  PubMed  Google Scholar 

  • Igbinosa EO (2016) Detection and antimicrobial resistance of Vibrio isolates in aquaculture environments: implications for public health. Microb Drug Resist 22:238–245

    Article  CAS  PubMed  Google Scholar 

  • Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23:35–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenny K, Käppeli O, Fiechter A (1991) Biosurfactants from Bacillus licheniformis: structural analysis and characterization. Appl Microbiol Biotechnol 36:5–13

    Article  CAS  PubMed  Google Scholar 

  • Jones MK, Oliver JD (2009) Vibrio vulnificus: disease and pathogenesis. Infect Immun 77:1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalpana BJ, Aarthy S, Pandian SK (2012) Antibiofilm activity of α-amylase from Bacillus subtilis S8–18 against biofilm forming human bacterial pathogens. Appl Biochem Biotechnol 167:1778–1794

    Article  CAS  PubMed  Google Scholar 

  • Khajanchi BK, Fadl AA, Borchardt MA, Berg RL, Horneman AJ, Stemper ME, Joseph SW, Moyer NP, Sha J, Chopra AK (2010) Distribution of virulence factors and molecular fingerprinting of Aeromonas species isolates from water and clinical samples: suggestive evidence of water-to-human transmission. Appl Environ Microbiol 76:2313–2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuebutornye FKA, Lu Y, Abarike ED, Wang Z, Li Y, Sakyi ME (2020) In vitro assessment of the probiotic characteristics of three bacillus species from the gut of nile tilapia, Oreochromis niloticus. Probiotics Antimicrob Proteins 12:412–424

    Article  CAS  PubMed  Google Scholar 

  • Lafferty KD, Harvell CD, Conrad JM, Friedman CS, Kent ML, Kuris AM, Powell EN, Rondeau D, Saksida SM et al (2015) Infectious diseases affect marine fisheries and aquaculture economics. Ann Rev Mar Sci 7:471–496

    Article  PubMed  Google Scholar 

  • Lødemel JB, Mayhew TM, Myklebust R, Olsen RE, Espelid S, Ringø E (2001) Effect of three dietary oils on disease susceptibility in Arctic charr (Salvelinus alpinus L.) during cohabitant challenge with Aeromonas salmonicida ssp. salmonicida. Aquac Res 32:935–945

    Article  Google Scholar 

  • Mcclean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GS, Williams P et al (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiol 143(Pt 12):3703–3711

    Article  CAS  Google Scholar 

  • Mclean RJ, Pierson LS 3rd, Fuqua C (2004) A simple screening protocol for the identification of quorum signal antagonists. J Microbiol Methods 58:351–360

    Article  CAS  PubMed  Google Scholar 

  • Meidong R, Khotchanalekha K, Doolgindachbaporn S, Nagasawa T, Nakao M, Sakai K, Tongpim S (2018) Evaluation of probiotic Bacillus aerius B81e isolated from healthy hybrid catfish on growth, disease resistance and innate immunity of Pla-mong Pangasius bocourti. Fish Shellfish Immunol 73:1–10

    Article  CAS  PubMed  Google Scholar 

  • Menanteau-Ledouble S, Kumar G, Saleh M, El-Matbouli M (2016) Aeromonas salmonicida: updates on an old acquaintance. Dis Aquat Organ 120:49–68

    Article  CAS  PubMed  Google Scholar 

  • Midhun SJ, Neethu S, Vysakh A, Sunil MA, Radhakrishnan EK, Jyothis M (2017) Antibacterial activity of autochthonous bacteria isolated from Anabas testudineus (Bloch, 1792) and it’s in vitro probiotic characterization. Microb Pathog 113:312–320

    Article  CAS  PubMed  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Moons P, Michiels CW, Aertsen A (2009) Bacterial interactions in biofilms. Crit Rev Microbiol 35:157–168

    Article  CAS  PubMed  Google Scholar 

  • Morohoshi T, Kato M, Fukamachi K, Kato N, Ikeda T (2008) N-acylhomoserine lactone regulates violacein production in Chromobacterium violaceum type strain ATCC 12472. FEMS Microbiol Lett 279:124–130

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Banerjee G, Mukherjee P, Ray AK, Chandra G, Ghosh K (2019) Antibacterial substances produced by pathogen inhibitory gut bacteria in Labeo rohita: Physico-chemical characterization, purification and identification through MALDI-TOF mass spectrometry. Microb Pathog. https://doi.org/10.1016/j.micpath.2019.02.028

    Article  PubMed  Google Scholar 

  • Munn C (2005) Pathogens in the Sea: An Overview. In: Belkin S, Colwell R (eds) Oceans and Health: Pathogens in the Marine Environment. Springer US

  • Nahar S, Mizan MFR, Ha AJW, Ha SD (2018) Advances and future prospects of enzyme-based biofilm prevention approaches in the food industry. Compr Rev Food Sci Food Saf 17:1484–1502

    Article  PubMed  Google Scholar 

  • Nandi A, Dan SK, Banerjee G, Ghosh P, Ghosh K, Ringø E, Ray AK (2017) Probiotic potential of autochthonous bacteria isolated from the gastrointestinal tract of four freshwater teleosts. Probiotics Antimicrob Proteins 9:12–21

    Article  PubMed  Google Scholar 

  • Nicholson W, Setlow P (1990) Sporulation, germination and outgrowth. Harwood CR, Cutting SM (Eds), Molecular biological methods for Bacillus. Chichester, UK: John Wiley & Sons Ltd

  • O’toole R, Von Hofsten J, Rosqvist R, Olsson PE, Wolf-Watz H (2004) Visualisation of zebrafish infection by GFP-labelled Vibrio anguillarum. Microb Pathog 37:41–46

    Article  CAS  PubMed  Google Scholar 

  • Oisson JC, Jöborn A, Westerdahl A, Blomberg L, Kjelleberg S, Conway PL et al (1996) Is the turbot, Scophthalmus maximus (L.), intestine a portal of entry for the fish pathogen Vibrio anguillarum? J Fish Dis 19:225–234

    Article  Google Scholar 

  • Olishevska S, Nickzad A, Déziel E (2019) Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Appl Microbiol Biotechnol 103:1189–1215

    Article  CAS  PubMed  Google Scholar 

  • Pande GS, Natrah FM, Flandez AV, Kumar U, Niu Y, Bossier P, Defoirdt T (2015) Isolation of AHL-degrading bacteria from micro-algal cultures and their impact on algal growth and on virulence of Vibrio campbellii to prawn larvae. Appl Microbiol Biotechnol 99:10805–10813

    Article  CAS  PubMed  Google Scholar 

  • Papa R, Selan L, Parrilli E, Tilotta M, Sannino F, Feller G, Tutino ML, Artini M (2015) Anti-biofilm activities from marine cold adapted bacteria against staphylococci and Pseudomonas aeruginosa. Front Microbiol 6:1333

    Article  PubMed  PubMed Central  Google Scholar 

  • Park SB, Aoki T, Jung TS (2012) Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Vet Res 43:67–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Pitcher DG, Saunders NA, Owen RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156

    Article  CAS  Google Scholar 

  • Pletzer D, Coleman SR, Hancock RE (2016) Anti-biofilm peptides as a new weapon in antimicrobial warfare. Curr Opin Microbiol 33:35–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plumb JA, Hanson LA (2011) Health maintenance and principal microbial diseases of cultured fishes, 3rd edn. Blackwell Publishing Ltd., Ames, Iowa, USA

    Google Scholar 

  • Ramesh D, Vinothkanna A, Rai AK, Vignesh VS (2015) Isolation of potential probiotic Bacillus spp. and assessment of their subcellular components to induce immune responses in Labeo rohita against Aeromonas hydrophila. Fish Shellfish Immunol 45:268–276

    Article  CAS  PubMed  Google Scholar 

  • Ran C, Carrias A, Williams MA, Capps N, Dan BCT, Newton JC, Kloepper JW, Ooi EL, Browdy CL, Terhune JS, Liles MR (2012) Identification of Bacillus strains for biological control of catfish pathogens. PLoS One 7:e45793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen-Ivey CR, Figueras MJ, Mcgarey D, Liles MR (2016) Virulence factors of Aeromonas hydrophila: in the wake of reclassification. Front Microbiol 7:1337

    Article  PubMed  PubMed Central  Google Scholar 

  • Ringø E, Jutfelt F, Kanapathippillai P, Bakken Y, Sundell K, Glette J, Mayhew TM, Myklebust R, Olsen RE (2004) Damaging effect of the fish pathogen Aeromonas salmonicida ssp. salmonicida on intestinal enterocytes of Atlantic salmon (Salmo salar L.). Cell Tissue Res 318:305–311

  • Rivas AJ, Lemos ML, Osorio CR (2013) Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans. Front Microbiol 4:283

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero M, Martin-Cuadrado AB, Roca-Rivada A, Cabello AM, Otero A (2011) Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiol Ecol 75:205–217

    Article  CAS  PubMed  Google Scholar 

  • Sahoo TK, Jena PK, Patel AK, Seshadri S (2016) Bacteriocins and their applications for the treatment of bacterial diseases in aquaculture: a review. Aquac Res 47:1013–1027

    Article  CAS  Google Scholar 

  • Serra CR, Almeida EM, Guerreiro I, Santos R, Merrifield DL, Tavares F, Oliva-Teles A, Enes P (2019) Selection of carbohydrate-active probiotics from the gut of carnivorous fish fed plant-based diets. Sci Rep 9:6384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shelburne CE, An FY, Dholpe V, Ramamoorthy A, Lopatin DE, Lantz MS (2007) The spectrum of antimicrobial activity of the bacteriocin subtilosin A. J Antimicrob Chemother 59:297–300

    Article  CAS  PubMed  Google Scholar 

  • Soltani M, Ghosh K, Hoseinifar SH, Kumar V, Lymbery AJ, Roy S, Ringø E (2019) Genus bacillus, promising probiotics in aquaculture: aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Rev Fish Sci Aquac 27:331–379

    Article  Google Scholar 

  • Sumi CD, Yang BW, Yeo IC, Hahm YT (2014) Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can J Microbiol 61:93–103

    Article  CAS  PubMed  Google Scholar 

  • Tam NK, Uyen NQ, Hong HA, Le Duc H, Hoa TT, Serra CR, Henriques AO, Cutting SM (2006) The intestinal life cycle of Bacillus subtilis and close relatives. J Bacteriol 188:2692–2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thankappan B, Ramesh D, Ramkumar S, Natarajaseenivasan K, Anbarasu K (2015) Characterization of Bacillus spp. from the gastrointestinal tract of Labeo rohita: towards to identify novel probiotics against fish pathogens. Appl Biochem Biotechnol 175:340–353

    Article  CAS  PubMed  Google Scholar 

  • Thasana N, Prapagdee B, Rangkadilok N, Sallabhan R, Aye SL, Ruchirawat S, Loprasert S (2010) Bacillus subtilis SSE4 produces subtulene A, a new lipopeptide antibiotic possessing an unusual C15 unsaturated beta-amino acid. FEBS Lett 584:3209–3214

    Article  CAS  PubMed  Google Scholar 

  • Tinh NTN, Dung NV, Trung CT, Thuy VT (2013) In vitro characterization of a recombinant AHL-lactonase from Bacillus cereus isolated from a striped catfish (Pangasianodon hypophthalmus) pond. Indian J Microbiol 53:485–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torabi Delshad S, Soltanian S, Sharifiyazdi H, Haghkhah M, Bossier P (2018) Identification of N-acyl homoserine lactone-degrading bacteria isolated from rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 125:356–369

    Article  CAS  PubMed  Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol R 64:655–671

    Article  CAS  Google Scholar 

  • Vinoj G, Vaseeharan B, Thomas S, Spiers AJ, Shanthi S (2014) Quorum-quenching activity of the AHL-lactonase from Bacillus licheniformis DAHB1 inhibits Vibrio biofilm formation in vitro and reduces shrimp intestinal colonisation and mortality. Mar Biotechnol (NY) 16:707–715

    Article  CAS  Google Scholar 

  • Wang AR, Ran C, Ringø E, Zhou ZG (2018a) Progress in fish gastrointestinal microbiota research. Rev Aquacult 10:626–640

  • Wang H, Wei CX, Min L, Zhu LY (2018b) Good or bad: gut bacteria in human health and diseases. Biotechnol Biotechnol Equip 32:1075–1080

  • Wang R, Zhong Y, Gu X, Yuan J, Saeed AF, Wang S (2015) The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front Microbiol 6:144

    PubMed  PubMed Central  Google Scholar 

  • Wang YB, Li JR, Lin J (2008) Probiotics in aquaculture: challenges and outlook. Aquac 281:1–4

    Article  Google Scholar 

  • Weir M, Rajić A, Dutil L, Uhland C, Bruneau N (2012) Zoonotic bacteria and antimicrobial resistance in aquaculture: opportunities for surveillance in Canada. Can Vet J 53:619–622

    PubMed  PubMed Central  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2014) Antimicrobial Resistance: Global Report on Surveillance

  • Xiu P, Liu R, Zhang D, Sun C (2017) Pumilacidin-like lipopeptides derived from marine bacterium Bacillus sp. strain 176 suppress the motility of Vibrio alginolyticus. Appl Environ Microbiol 83:e00450-e517

    Article  PubMed  PubMed Central  Google Scholar 

  • Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yatip P, Teja DNC, Flegel TW, Soowannayan C (2018) Extract from the fermented soybean product Natto inhibits Vibrio biofilm formation and reduces shrimp mortality from Vibrio harveyi infection. Fish Shellfish Immunol 72:348–355

    Article  CAS  PubMed  Google Scholar 

  • Zeigler DR, Prágai Z, Rodriguez S, Chevreux B, Muffler A, Albert T, Bai R, Wyss M, Perkins JB (2008) The origins of 168, W23, and other Bacillus subtilis legacy strains. J Bacteriol 190:6983–6995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Xia Y, Zhu C, Chu W (2018) Isolation of marine Bacillus sp. with antagonistic and organic-substances-degrading activities and its potential application as a fish probiotic. Mar Drugs 16

  • Zhou S, Zhang A, Yin H, Chu W (2016) Bacillus sp. QSI-1 modulate quorum sensing signals reduce Aeromonas hydrophila level and alter gut microbial community structure in fish. Front Cell Infect Microbiol 6:184

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Zhou X, Zhong Z, Wang C, Zhang H, Li D, He T, Li C, Liu X, Yuan H, Ji H, Luo Y, Gu W, Fu H, Peng G (2014) Investigation of antibacterial activity of Bacillus spp. isolated from the feces of Giant Panda and characterization of their antimicrobial gene distributions. World J Microbiol Biotechnol 30:3129–3136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank F. Tavares (CIBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Portugal), M. A. Morinigo (Universidad de Málaga, Spain) for the gift of pathogenic bacterial strains, and A. O. Henriques (Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, ITQB-NOVA, Portugal) for the gift of B. subtilis 168.

Funding

RAS is the recipient of a PhD grant (SFRH/BD/131069/2017) from FCT (Foundation for Science and Technology), under the POCH program; PE and CRS have a scientific employment contract supported by national funds through FCT–Portuguese Foundation for Science and Technology. This research was partially supported by the Strategic Funding to UIDB/04423/2020 and UIDP/04423/2020, UIDB/04033/2020 and UIDB/00772/2020 through national funds provided by FCT and European Regional Development Fund (ERDF), in the framework of the program PT2020.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: RAS, AO-T, MJS, PE, CRS. Performed the fish trial: RAS, PP-F, PE. Performed the experiments and analyzed the data: RAS, CRS. Critically evaluated all the data and edited manuscript: RAS, AO-T, RJ, MJS, PE, CRS. Wrote the paper: RAS, CRS. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Rafaela A. Santos or Cláudia R. Serra.

Ethics declarations

Ethical Approval

Animal experiments were approved by the Animal Welfare Committee of the Interdisciplinary Centre of Marine and Environmental Research (CIIMAR) and carried out in a registered installation (N16091.UDER) and were performed by trained scientists (following FELASA category C recommendations) in full compliance with national rules and following the European Directive 2010/63/EU of the European Parliament and the European Union Council on the protection of animals used for scientific purposes.

Conflict of Interest

RJ is an employee of Epicore Inc., a subsidiary of Archer Daniels Midland, that supported this research by completing a commercial licensing agreement for the potential utilization of the probiotic bacteria FI314, FI330, and FI442 identified in this research, in commercial products for aquaculture. The opinions expressed in the manuscript are those of the authors and do not necessarily reflect company policies. All other authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, R.A., Oliva-Teles, A., Pousão-Ferreira, P. et al. Isolation and Characterization of Fish-Gut Bacillus spp. as Source of Natural Antimicrobial Compounds to Fight Aquaculture Bacterial Diseases. Mar Biotechnol 23, 276–293 (2021). https://doi.org/10.1007/s10126-021-10022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-021-10022-x

Keywords

Navigation