Skip to main content
Log in

Trojan Horse Strategy for Non-invasive Interference of Clock Gene in the Oyster Crassostrea gigas

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

RNA interference is a powerful method to inhibit specific gene expression. Recently, silencing target genes by feeding has been successfully carried out in nematodes, insects, and small aquatic organisms. A non-invasive feeding-based RNA interference is reported here for the first time in a mollusk bivalve, the pacific oyster Crassostrea gigas. In this Trojan horse strategy, the unicellular alga Heterocapsa triquetra is the food supply used as a vector to feed oysters with Escherichia coli strain HT115 engineered to express the double-stranded RNA targeting gene. To test the efficacy of the method, the Clock gene, a central gene of the circadian clock, was targeted for knockout. Results demonstrated specific and systemic efficiency of the Trojan horse strategy in reducing Clock mRNA abundance. Consequences of Clock disruption were observed in Clock-related genes (Bmal, Tim1, Per, Cry1, Cry2, Rev.-erb, and Ror) and triploid oysters were more sensitive than diploid to the interference. This non-invasive approach shows an involvement of the circadian clock in oyster bioaccumulation of toxins produced by the harmful alga Alexandrium minutum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrawal N, Dasaradhi PVN, Mohmmed A et al (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67:657–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci 4:143–176

    Article  Google Scholar 

  • Bricelj VM, Shumway SE (1998) Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics, and biotransformation. Rev Fish Sci 6:315–383

    Article  CAS  Google Scholar 

  • Chen J, Zhang D, Yao Q et al (2010) Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. Insect Mol Biol 19:777–786

    Article  CAS  PubMed  Google Scholar 

  • Choi SH, Jee BY, Lee SJ et al (2013) Effects of RNA interference-mediated knock-down of hypoxia-inducible factor-α on respiratory burst activity of the Pacific oyster Crassostrea gigas hemocytes. Fish Shellfish Immunol 35:476–479

    Article  CAS  PubMed  Google Scholar 

  • Claudel T, Cretenet G, Saumet A, Gachon F (2007) Crosstalk between xenobiotics metabolism and circadian clock. FEBS Lett 581:3626–3633

    Article  CAS  PubMed  Google Scholar 

  • Cole JJ (1982) Interactions between bacteria and algae in aquatic ecosystems. Annu Rev Ecol Syst 13:291–314

    Article  Google Scholar 

  • Doucette GJ (1995) Interactions between bacteria and harmful algae: a review. Nat Toxins 3:65–74

    Article  CAS  PubMed  Google Scholar 

  • Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96:271–290

    Article  CAS  PubMed  Google Scholar 

  • Dupuy C, Vaquer A, Lam Hoai T et al (2000) Feeding rate of the oyster Crassostrea gigas in a natural planktonic community of the Mediterranean Thau lagoon. Mar Ecol Prog Ser 205:171–184

    Article  Google Scholar 

  • Fabioux C, Corporeau C, Quillien V et al (2009) In vivo RNA interference in oyster –vasa silencing inhibits germ cell development. FEBS J 276:2566–2573

    Article  CAS  PubMed  Google Scholar 

  • Fang D, Xu G, Hu Y et al (2011) Identification of genes directly involved in shell formation and their functi ons in pearl oyster, Pinctada fucata. PLoS One 6:e21860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Fonken LK, Workman JL, Walton JC et al (2010) Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci 107:18664–18669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franca S, Viegas S, Mascarenchas V, et al (1995) Prokaryotes in association with a toxic Alexandrium lusitanicum in culture. In: Lassus P, Arzul G, Erard E, Gentien P, Marcaillou C (eds) Harmful Marine Algal Blooms. Lavoisier, Paris, pp 44–51

  • Funabara D, Ohmori F, Kinoshita S et al (2014) Novel genes participating in the formation of prismatic and nacreous layers in the pearl oyster as revealed by their tissue distribution and RNA interference knockdown. PLoS One 9:e84706

    Article  PubMed  PubMed Central  Google Scholar 

  • Gachon F, Firsov D (2011) The role of circadian timing system on drug metabolism and detoxification. Expert Opin Drug Metab Toxicol 7:147–158

    Article  PubMed  Google Scholar 

  • Garrett RW, Gasiewicz TA (2006) The aryl hydrocarbon receptor agonist 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin alters the circadian rhythms, quiescence, and expression of clock genes in murine hematopoietic stem and progenitor cells. Mol Pharmacol 69:2076–2083

    Article  CAS  PubMed  Google Scholar 

  • Guéguen M, Baron R, Bardouil M et al (2012) Influence of Crassostrea gigas (Thunberg) sexual maturation stage and ploidy on uptake of paralytic phycotoxins. Toxicon 60:40–43

    Article  PubMed  Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Springer US, Boston, pp 29–60

    Chapter  Google Scholar 

  • Haberkorn H, Lambert C, Le Goïc N et al (2010) Effects of Alexandrium minutum exposure upon physiological and hematological variables of diploid and triploid oysters, Crassostrea gigas. Aquat Toxicol 97:96–108

    Article  CAS  PubMed  Google Scholar 

  • Hallegraeff GM, Anderson DM, Cembella AD, Enevoldsen HO (eds) (2003) Manual on harmful marine microalgae. UNESCO Publishing, Paris

  • Hawkins AJS, Magoulas A, Héral M et al (2000) Separate effects of triploidy, parentage and genomic diversity upon feeding behaviour, metabolic efficiency and net energy balance in the Pacific oyster Crassostrea gigas. Genet Res 76:273–284

    Article  CAS  PubMed  Google Scholar 

  • Huvet A, Béguel J-P, Cavaleiro NP et al (2015) Disruption of amylase genes by RNA interference affects reproduction in the Pacific oyster Crassostrea gigas. J Exp Biol 218:1740–1747

    Article  PubMed  Google Scholar 

  • Huvet A, Fleury E, Corporeau C et al (2012) In vivo RNA interference of a gonad-specific transforming growth factor-β in the pacific oyster Crassostrea gigas. Mar Biotechnol 14:402–410

    Article  CAS  PubMed  Google Scholar 

  • Jee BY, Kim MS, Cho MY et al (2014) Simultaneous and systemic knock-down of Big Defensin 1 and 2 gene expression in the Pacific oyster Crassostrea gigas using long double-stranded RNA-mediated RNA interference. J Fish Aquat Sci 17:377–380

    Google Scholar 

  • Kamath RS, Martinez-Campos M, Zipperlen P et al (2000) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2:research0002

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Zhang M, Zhang H (2011) RNA interference of four genes in adult Bactrocera dorsalis by feeding their dsRNAs. PLoS One 6:e17788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mat AM, Haberkorn H, Bourdineaud J-P et al (2013) Genetic and genotoxic impacts in the oyster Crassostrea gigas exposed to the harmful alga Alexandrium minutum. Aquat Toxicol 140–141:458–465

    Article  PubMed  Google Scholar 

  • Mat AM, Massabuau J-C, Ciret P, Tran D (2012) Evidence for a plastic dual circadian rhythm in the oyster Crassostrea gigas. Chronobiol Int 29:857–867

    Article  PubMed  Google Scholar 

  • Mello CC, Conte D (2004) Revealing the world of RNA interference. Nature 431:338–342

    Article  CAS  PubMed  Google Scholar 

  • Moriyama Y, Kamae Y, Uryu O, Tomioka K (2012) Gb’Clock is expressed in the optic lobe and is required for the circadian clock in the cricket Gryllus bimaculatus. J Biol Rhythm 27:467–477

    Article  CAS  Google Scholar 

  • Mukai M, Tischkau SA (2007) Effects of tryptophan photoproducts in the circadian timing system: searching for a physiological role for aryl hydrocarbon receptor. Toxicol Sci 95:172–181

    Article  CAS  PubMed  Google Scholar 

  • Nakamura TJ, Moriya T, Inoue S et al (2005) Estrogen differentially regulates expression of Per1 and Per2 genes between central and peripheral clocks and between reproductive and nonreproductive tissues in female rats. J Neurosci Res 82:622–630

    Article  CAS  PubMed  Google Scholar 

  • Navara KJ, Nelson RJ (2007) The dark side of light at night: physiological, epidemiological, and ecological consequences. J Pineal Res 43:215–224

    Article  CAS  PubMed  Google Scholar 

  • Nell JA (2002) Farming triploid oysters. Aquaculture 210:69–88

    Article  Google Scholar 

  • Newmark PA, Reddien PW, Cebrià F, Alvarado AS (2003) Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proc Natl Acad Sci 100:11861–11865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes FMF, Simões ZLP (2009) A non-invasive method for silencing gene transcription in honeybees maintained under natural conditions. Insect Biochem Mol Biol 39:157–160

    Article  CAS  PubMed  Google Scholar 

  • Pak J, Fire A (2007) Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315:241–244

    Article  CAS  PubMed  Google Scholar 

  • Perrigault M, Tran D (2017) Identification of the molecular clockwork of the oyster Crassostrea gigas. PLoS One 12:e0169790

  • Piferrer F, Beaumont A, Falguière J-C et al (2009) Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 293:125–156

    Article  Google Scholar 

  • Rausch De Traubenberg C, Soyer-Gobillard MO (1990) Bacteria associated with a photosynthetic dinoflagellate in culture. Symbiosis 8:117–133

    Google Scholar 

  • Labrecque G, Beauchamp D (2003) Rhythms and pharmacokinetics. In: Redfern P (ed) Chronotherapeutics. Pharmaceutical Press, London, pp 75–110

  • Rivera AS, Hammel JU, Haen KM et al (2011) RNA interference in marine and freshwater sponges: actin knockdown in Tethya wilhelma and Ephydatia muelleriby ingested dsRNA expressing bacteria. BMC Biotechnol 11:67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouhana L, Weiss JA, Forsthoefel DJ et al (2013) RNA interference by feeding in vitro–synthesized double-stranded RNA to planarians: methodology and dynamics. Dev Dyn 242:718–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarathi M, Simon MC, Venkatesan C, Hameed ASS (2008) Oral administration of bacterially expressed VP28dsRNA to protect Penaeus monodon from white spot syndrome virus. Mar Biotechnol 10:242–249

    Article  CAS  PubMed  Google Scholar 

  • Schumpert CA, Dudycha JL, Patel RC (2015) Development of an efficient RNA interference method by feeding for the microcrustacean Daphnia. BMC Biotechnol 15:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Shpigel M, Barber BJ, Mann R (1992) Effects of elevated temperature on growth, gametogenesis, physiology, and biochemical composition in diploid and triploid Pacific oysters, Crassostrea gigas Thunberg. J Exp Mar Biol Ecol 161:15–25

    Article  Google Scholar 

  • Sijen T, Fleenor J, Simmer F et al (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465–476

    Article  CAS  PubMed  Google Scholar 

  • Sijen T, Steiner FA, Thijssen KL, Plasterk RHA (2007) Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science 315:244–247

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Saruwatari K, Kogure T et al (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325:1388–1390

    Article  CAS  PubMed  Google Scholar 

  • Tabara H, Grishok A, Mello CC et al (1998) RNAi in C. elegans: soaking in the genome sequence. Science 282:430–431

    Article  CAS  PubMed  Google Scholar 

  • Takekata H, Numata H, Shiga S, Goto SG (2014) Silencing the circadian clock gene Clock using RNAi reveals dissociation of the circatidal clock from the circadian clock in the mangrove cricket. J Insect Physiol 68:16–22

    Article  CAS  PubMed  Google Scholar 

  • Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263:103–112

    Article  CAS  PubMed  Google Scholar 

  • Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854–854

    Article  CAS  PubMed  Google Scholar 

  • Tosteson TR, Ballantine DL, Tosteson CG et al (1989) Associated bacterial flora, growth, and toxicity of cultured benthic dinoflagellates Ostreopsis lenticularis and Gambierdiscus toxicus. Appl Environ Microbiol 55:137–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tran D, Ciutat A, Mat A et al (2015) The toxic dinoflagellate Alexandrium minutum disrupts daily rhythmic activities at gene transcription, physiological and behavioral levels in the oyster Crassostrea gigas. Aquat Toxicol 158:41–49

    Article  CAS  PubMed  Google Scholar 

  • Turner CT, Davy MW, MacDiarmid RM et al (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15:383–391

    Article  CAS  PubMed  Google Scholar 

  • Uryu O, Kamae Y, Tomioka K, Yoshii T (2013) Long-term effect of systemic RNA interference on circadian clock genes in hemimetabolous insects. J Insect Physiol 59:494–499

    Article  CAS  PubMed  Google Scholar 

  • Walshe DP, Lehane SM, Lehane MJ, Haines LR (2009) Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA. Insect Mol Biol 18:11–19

    Article  CAS  PubMed  Google Scholar 

  • Whangbo JS, Hunter CP (2008) Environmental RNA interference. Trends Genet 24:297–305

    Article  CAS  PubMed  Google Scholar 

  • Yerushalmi S, Green RM (2009) Evidence for the adaptive significance of circadian rhythms. Ecol Lett 12:970–981

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the financial support of the National Research Agency (ANR), ACCUTOX project 13-CESA-0019 (2013-2017) and a ministerial PhD scholarship for L. Payton. Authors thank Dr. Denis Dupuy (IECB, ARNA-INSERM, U869, Pessac, France) for providing HT115 bacteria, Dr. Hélène Hegaret and Dr. Malwenn Lassudrie (LEMAR, UMR 6539, Plouzané, France) for providing A. minutum (strain AM89BM). Authors also thank Dr. Katherine Flynn for English corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Tran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payton, L., Perrigault, M., Bourdineaud, JP. et al. Trojan Horse Strategy for Non-invasive Interference of Clock Gene in the Oyster Crassostrea gigas . Mar Biotechnol 19, 361–371 (2017). https://doi.org/10.1007/s10126-017-9761-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-017-9761-9

Keywords

Navigation