Skip to main content

Advertisement

Log in

Expression Profiling Analysis of the microRNA Response of Cynoglossus semilaevis to Vibrio anguillarum and Other Stimuli

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

To investigate the roles of microRNAs (miRNA) of Cynoglossus semilaevis in response to Vibrio anguillarum that were previously identified using high-throughput sequencing, microarray analyses was performed on three small RNA libraries (CG, NOSG, and HOSG) prepared from C. semilaevis immune tissues. In total, of 1279 designed probes, 739 (57.78 %) were detectable. The expression levels of these miRNAs were analyzed using pairwise comparisons among the three libraries, and a total of 99 miRNAs were observed to be significantly differentially expressed. The expression patterns of 10 differentially expressed miRNAs were validated by real-time quantitative PCR (RT-qPCR). In addition, expression of miR-142-5p, miR-223, and miR-181a in response to V. anguillarum at numerous time-points in four tissues, as well as the responses to lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (poly I:C), peptidoglycan (PGN), and red-spotted grouper nervous necrosis virus (RGNNV) in head kidney cells, were studied by qRT-PCR. Taken together, all of the expression profiles showed significant differences compared to the control group; both similarities and differences in the expression responses to the same pathogen were observed. Collectively, these findings highlighted the putative roles for miRNAs in the context of the innate immune response of C. semilaevis exposing to pathogens and that further studies are needed to understand the molecular mechanisms of miRNA regulation in C. semilaevis host–pathogen interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anglicheau D, Sharma VK, Ding R, Hummel A, Snopkowski C, Dadhania D, Seshan SV, Suthanthiran M (2009) MicroRNA expression profiles predictive of human renal allograft status. Proc Natl Acad Sci 106:5330–5335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Basso K, Sumazin P, Morozov P, Schneider C, Maute RL, Kitagawa Y, Mandelbaum J, Haddad J Jr, Chen C-Z, Califano A (2009) Identification of the human mature B cell miRNome. Immunity 30:744–752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ben-Dov IZ, Muthukumar T, Morozov P, Mueller FB, Tuschl T, Suthanthiran M (2012) MicroRNA sequence profiles of human kidney allografts with or without tubulointerstitial fibrosis. Transplantation 94:1086–94

    Article  CAS  PubMed  Google Scholar 

  • Benson, E.A., Skaar, T.C. (2013). Incubation of Whole Blood at Room Temperature Does Not Alter the Plasma Concentrations of MicroRNA-16 and -223. Drug Metab Dispos 41:1778–1781

  • Berezikov E, Guryev V, Van De Belt J, Wienholds E, Plasterk RH, Cuppen E (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120:21–24

    Article  CAS  PubMed  Google Scholar 

  • Bizuayehu TT, Babiak I (2014) MicroRNA in teleost fish. Genome Biol Evol 6:1911–1937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bolstad BM, Irizarry RA, Strand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  CAS  PubMed  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu J-K (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Zhu W, Shi D, Lv L, Zhang C, Liu P, Hu W (2010) MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2. Oncol Rep 23:997–1003

    CAS  PubMed  Google Scholar 

  • Chen S-Y (2014) MicroRNA-223: a double-edged sword in rheumatoid arthritis. Rheumatol Int 34:285–286

    Article  PubMed  Google Scholar 

  • Chen X, Li Q, Wang J, Guo X, Jiang X, Ren Z, Weng C, Sun G, Wang X, Liu Y (2009) Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biol 10:R78

    Article  PubMed Central  PubMed  Google Scholar 

  • Cichocki F, Felices M, Mccullar V, Presnell SR, Al-Attar A, Lutz CT, Miller JS (2011) Cutting edge: microRNA-181 promotes human NK cell development by regulating Notch signaling. J Immunol 187:6171–6175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Danger R, Pallier A, Giral M, Martínez-Llordella M, Lozano JJ, Degauque N, Sanchez-Fueyo A, Soulillou J-P, Brouard S (2012) Upregulation of miR-142-3p in peripheral blood mononuclear cells of operationally tolerant patients with a renal transplant. J Am Soc Nephrol 23:597–606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao X, Gulari E, Zhou X (2004) In situ synthesis of oligonucleotide microarrays. Biopolymers 73:579–596

    Article  CAS  PubMed  Google Scholar 

  • Ghosh Z, Mallick B, Chakrabarti J (2009) Cellular versus viral microRNAs in host–virus interaction. Nucleic Acids Res 37:1035–1048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He Q, Zhou X, Li S, Jin Y, Chen Z, Chen D, Cai Y, Liu Z, Zhao T, Wang A (2013) MicroRNA-181a suppresses salivary adenoid cystic carcinoma metastasis by targeting MAPK–Snai2 pathway. Biochim Biophys Acta Gen Subj 1830:5258–5266

    Article  CAS  Google Scholar 

  • Huang S, Wu S, Ding J, Lin J, Wei L, Gu J, He X (2010) MicroRNA-181a modulates gene expression of zinc finger family members by directly targeting their coding regions. Nucleic Acids Res 38:7211–7218

  • Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM, Kobayashi SV, Lim L, Burchard J, Jackson AL (2008) MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 28:2167–2174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiao Y, Zheng Z, Du X, Wang Q, Huang R, Deng Y, Shi S, Zhao X (2014) Identification and characterization of microRNAs in pearl oyster Pinctada martensii by solexa deep sequencing. Mar Biotechnol 16:54–62

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaur S, Spillane C (2014) Reduction in carotenoid levels in the marine diatom Phaeodactylum tricornutum by artificial microRNAs targeted against the endogenous phytoene synthase gene. Mar Biotechnol 17:1–7

    Article  PubMed  Google Scholar 

  • Kim D-J, Linnstaedt S, Palma J, Park JC, Ntrivalas E, Kwak-Kim JY, Gilman-Sachs A, Beaman K, Hastings ML, Martin JN (2012) Plasma components affect accuracy of circulating cancer-related microRNA quantitation. J Mol Diagnostics 14:71–80

    Article  Google Scholar 

  • Kroh EM, Parkin RK, Mitchell PS, Tewari M (2010) Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50:298–301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  • Li Q-J, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129:147–161

    Article  CAS  PubMed  Google Scholar 

  • Li YT, Chen SY, Wang CR, Liu MF, Lin CC, Jou I, Shiau AL, Wu CL (2012) Brief report: amelioration of collagen‐induced arthritis in mice by lentivirus‐mediated silencing of microRNA‐223. Arthritis Rheum 64:3240–3245

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen J, Volkmann I, Fiedler J, Schmidt M, Scheffner I, Haller H, Gwinner W, Thum T (2011) Urinary miR‐210 as a mediator of acute T‐cell mediated rejection in renal allograft recipients. Am J Transplant 11:2221–2227

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Cheng L, Liu H, Zhang J, Shi Y, Zeng F, Miele L, Sarkar FH, Xia J, Wang Z (2013) Genistein down-regulates miR-223 expression in pancreatic cancer cells. Curr Drug Targets 14:1150–1156

    Article  CAS  PubMed  Google Scholar 

  • Naeem A, Zhong K, Moisá S, Drackley J, Moyes K, Loor J (2012) Bioinformatics analysis of microRNA and putative target genes in bovine mammary tissue infected with Streptococcus uberis. J Dairy Sci 95:6397–6408

    Article  CAS  PubMed  Google Scholar 

  • Nelson JS (2006) Fishes of the world. Wiley-Interscience, New York, p 416

  • Ou J, Meng Q, Li Y, Xiu Y, Du J, Gu W, Wu T, Li W, Ding Z, Wang W (2012) Identification and comparative analysis of the Eriocheir sinensis microRNA transcriptome response to Spiroplasma eriocheiris infection using a deep sequencing approach. Fish Shellfish Immunol 32:345–352

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Gao J, Liu J-Q, Wang X-W, Gu J-J, Huang H-J, Gong Y-F, Li Z-S (2012) Differential signature of fecal microRNAs in patients with pancreatic cancer. Mol Med Rep 6:201–209

    CAS  PubMed  Google Scholar 

  • Salem M, Xiao C, Womack J, Rexroad Iii CE, Yao J (2010) A microRNA repertoire for functional genome research in rainbow trout (Oncorhynchus mykiss). Mar Biotechnol 12:410–429

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  CAS  PubMed  Google Scholar 

  • Sha Z-X, Wang Q-L, Liu Y, Chen S-L (2012) Identification and expression analysis of goose-type lysozyme in half-smooth tongue sole (Cynoglossus semilaevis). Fish Shellfish Immunol 32:914–921

    Article  CAS  PubMed  Google Scholar 

  • Sha Z, Gong G, Wang S, Lu Y, Wang L, Wang Q, Chen S (2014) Identification and characterization of Cynoglossus semilaevis microRNA response to Vibrio anguillarum infection through high-throughput sequencing. Dev Comparative Immunol 44:59–69

    Article  CAS  Google Scholar 

  • Shibuya H, Nakasa T, Adachi N, Nagata Y, Ishikawa M, Deie M, Suzuki O, Ochi M (2013) Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation. Mod Rheumatol 23:674–685

    Article  CAS  PubMed  Google Scholar 

  • Streppel MM, Pai S, Campbell NR, Hu C, Yabuuchi S, Canto MI, Wang JS, Montgomery EA, Maitra A (2013) MicroRNA 223 is upregulated in the multistep progression of Barrett’s esophagus and modulates sensitivity to chemotherapy by targeting PARP1. Clin Cancer Res 19:4067–4078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sugatani T, Hruska KA (2009) Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem 284:4667–4678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teleman AA, Cohen SM (2006) Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev 20:417–422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tili E, Michaille J-J, Calin GA (2008) Expression and function of micro RNAs in immune cells during normal or disease state. Int J Med Sci 5:73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang H, Liu S, Cui J, Li C, Qiu X, Chang Y, Liu Z, Wang X (2014) Characterization and expression analysis of microRNAs in the tube foot of sea cucumber Apostichopus japonicus. PLoS One 9:e111820

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Yu Y, Tsuyada A, Ren X, Wu X, Stubblefield K, Rankin-Gee EK, Wang SE (2010) Transforming growth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene 30:1470–1480

    Article  PubMed Central  PubMed  Google Scholar 

  • Wei Z, Liu X, Feng T, Chang Y (2011) Novel and conserved micrornas in Dalian purple urchin (Strongylocentrotus nudus) identified by next generation sequencing. Int J Biol Sci 7:180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu C, Gong Y, Yuan J, Zhang W, Zhao G, Li H, Sun A, Zou Y, Ge J (2012) microRNA-181a represses ox-LDL-stimulated inflammatory response in dendritic cell by targeting c-Fos. J Lipid Res 53:2355–2363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu Z, Chen M, Ren Z, Zhang N, Xu H, Liu X, Tian G, Song L, Yang H (2013) Deep sequencing identifies regulated small RNAs in Dugesia japonica. Mol Biol Rep 40:4075–4081

    Article  CAS  PubMed  Google Scholar 

  • Yang CC, Hung PS, Wang PW, Liu CJ, Chu TH, Cheng HW, Lin SC (2011) miR‐181 as a putative biomarker for lymph‐node metastasis of oral squamous cell carcinoma. J Oral Pathol Med 40:397–404

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Guan G, Chen J, Naruse K, Hong Y (2014) Parameters and efficiency of direct gene disruption by zinc finger nucleases in medaka embryos. Mar Biotechnol 16:125–134

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Zhao L, Zhang K, Feng H, Wang H, Wang T, Xu T, Feng N, Wang C, Gao Y (2012a) Infection with street strain rabies virus induces modulation of the microRNA profile of the mouse brain. Virol J 9:159

  • Zhao P, Zhao L, Zhang T, Wang H, Qin C, Yang S, Xia X (2012b) Changes in microRNA expression induced by rabies virus infection in mouse brains. Microb Pathog 52:47–54

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Wang N, Xie M-S, Sha Z-X, Chen S-L (2012) Establishment and characterization of a new fish cell line from head kidney of half-smooth tongue sole (Cynoglossus semilaevis). Fish Physiol Biochem 38:1635–1643

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Li M, Wang X, Li Q, Wang T, Zhu Q, Zhou X, Wang X, Gao X, Li X (2012a) Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci 8:118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou X, Zhu Q, Eicken C, Sheng N, Zhang X, Yang L, Gao X (2012b) MicroRNA profiling using m paraflo microfluidic array technology. Series Editor John M Walker School of Life Sciences University of Hertfordshire Hatfield, Hertfordshire, AL10 9AB, UK: 153

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenxia Sha or Songlin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, G., Sha, Z., Chen, S. et al. Expression Profiling Analysis of the microRNA Response of Cynoglossus semilaevis to Vibrio anguillarum and Other Stimuli. Mar Biotechnol 17, 338–352 (2015). https://doi.org/10.1007/s10126-015-9623-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-015-9623-2

Keywords

Navigation