Skip to main content

Advertisement

Log in

SLDP: a Novel Protein Related to Caleosin Is Associated with the Endosymbiotic Symbiodinium Lipid Droplets from Euphyllia glabrescens

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Intracellular lipid droplets (LDs) have been proposed to play a key role in the mutualistic endosymbiosis between reef-building corals and the dinoflagellate endosymbiont Symbiodinium spp. This study investigates and identifies LD proteins in Symbiodinium from Euphyllia glabrescens. Discontinuous Percoll gradient centrifugation was used to separate Symbiodinium cells from E. glabrescens tentacles. Furthermore, staining with a fluorescent probe, Nile red, indicated that lipids accumulated in that freshly isolated Symbiodinium cells and lipid analyses further showed polyunsaturated fatty acids (PUFA) was abundant. The stable LDs were purified from endosymbiotic Symbiodinium cells. The structural integrity of the Symbiodinium LDs was maintained via electronegative repulsion and steric hindrance possibly provided by their surface proteins. Protein extracts from the purified LDs revealed a major protein band with a molecular weight of 20 kDa, which was termed Symbiodinium lipid droplet protein (SLDP). Interestingly, immunological cross-recognition analysis revealed that SLDP was detected strongly by the anti-sesame and anti-cycad caleosin antibodies. It was suggested that the stable Symbiodinium LDs were sheltered by this unique structural protein and was suggested that SLDP might be homologous to caleosin to a certain extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FSW:

Filtered natural seawater

LD:

Lipid droplet

MLDP:

Major lipid droplet protein

PCR:

Polymerase chain reaction

Q-TOF:

Quadrupole time-of-flight

RFLP:

Restriction fragment length polymorphism

SLDP:

Symbiodinium lipid droplet protein

TAG:

Triacylglycerol

PUFA:

Polyunsaturated fatty acid

References

  • Awai K, Matsuoka R, Shioi Y (2012) Lipid and fatty acid compositions of Symbiodinium strains. Proceedings of the 12th International Coral Reef Symposium

  • Battey JF, Patton JS (1984) A reevaluation of the role of glycerol in carbon translocation inzooxanthellae-coelenterate symbiosis. Mar Biol 79:27–38

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can Physiol J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  • Chen JC, Tsai CC, Tzen JTC (1999) Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds. Plant Cell Physiol 40:1079–1086

    Article  CAS  PubMed  Google Scholar 

  • Chen WNU, Kang HJ, Weis V, Mayfield AB, Jiang PL, Fang LS, Chen CS (2012) Diel rhythmicity of lipid-body formation in a coral-Symbiodinium endosymbiosis. Coral Reefs 31:521–534

    Article  Google Scholar 

  • Cook CB, D’Elia CF (1987) Are natural populations of zooxanthellae ever nutrient-limited? Symbiosis 4:199–211

    Google Scholar 

  • Davidi L, Katz A, Pick U (2012) Characterization of major lipid droplet proteins from Dunaliella. Planta 236:19–33

    Article  CAS  PubMed  Google Scholar 

  • Franklin DJ, Guldberg OH, Jones RJ, Berges JA (2004) Cell death and degeneration in the symbiotic dinoflagellates of the coral Stylophora pistillata during bleaching. Mar Ecol Prog Ser 272:117–130

    Article  Google Scholar 

  • Fuchs B, Schiller J, Sub R, Schurenberg M (2007) A direct and simple method of coupling matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to thin layer chromatography (TLC) for the analysis of phospholipids from egg yolk. Anal Bioanal Chem 389:827–834

    Article  CAS  PubMed  Google Scholar 

  • Greenspan P, Mayer EP, Fowler SD (1985) Nile red—a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    Article  CAS  PubMed  Google Scholar 

  • Guillard RRL (1975) In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York

    Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Herman EM (1987) Immunogold-localization and synthesis of an oil body membrane protein in developing soybean seeds. Planta 172:336–345

    Article  CAS  PubMed  Google Scholar 

  • Jiang PL, Tzen JT (2010) Caleosin serves as the major structural protein as efficient as oleosin on the surface of seed oil bodies. Plant Signal Behav 5:447–449

    Article  CAS  PubMed  Google Scholar 

  • Jiang PL, Pasaribu B, Chen CS (2014) Nitrogen-deprivation elevates lipid levels in Symbiodinium spp. by lipid droplet accumulation: morphological and compositional analyses. PLoS ONE 9:e87416

    Article  PubMed Central  PubMed  Google Scholar 

  • Kellogg RB, Patton JS (1983) Lipid droplets-medium of energy exchange in the symbiotic anemone Condylactis gigantea: a model coral polyp. Mar Biol 75:137–149

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • LaJeunesse TC (2004) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a species level marker. J Phycol 37:866–880

    Article  Google Scholar 

  • Leshevalier D, Bahl J, Moneger R (1972) Etude microanalytique des lipids dans de petits echantillons d’etioplastes et de chloroplasts isoles de feuilles de ble. CR Acad Sci Paris 275:963–966

    Google Scholar 

  • Lin LJ, Tzen JTC (2004) Two distinct steroleosins are present in seed oil bodies. Plant Physiol Biochem 42:601–608

    Article  CAS  PubMed  Google Scholar 

  • Lin LJ, Tai SSK, Peng CC, Tzen JTC (2002) Steroleosin, a sterol-binging dehydrogenase in seed oil bodies. Plant Physiol 128:1200–1211

  • Lin IP, Jiang PL, Chen CS, Tzen JTC (2012) A unique caleosin serving as the major integral protein in oil bodies isolated from Chlorella sp. cells cultured with limited nitrogen. Plant Physiol Biochem 61:80–87

    Article  CAS  PubMed  Google Scholar 

  • Moellering ER, Benning C (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell 9:97–106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murphy DJ (2001) Biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438

    Article  CAS  PubMed  Google Scholar 

  • Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26:601–611

    Article  CAS  Google Scholar 

  • Muscatine L, Falkowski PG, Porter JW, Dubinsky Z (1984) Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc Lond B Biol Sci 222:181–202

    Article  CAS  Google Scholar 

  • Nguyen HM, Baudet M, Cuine S, Adriano JM, Barthe D, Billon E, Bruley C, Beisson F, Peltier G, Ferro M, Li-Beisson Y (2011) Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11:4266–4273

    Article  CAS  PubMed  Google Scholar 

  • Oku H, Yamashiro H, Onaga K (2003) Lipid biosynthesis from [14C]-glucose in the coral Montipora digitata. Fish Sci 69:625–631

    Article  CAS  Google Scholar 

  • Pasaribu B, Lin IP, Chen CS, Lu CY, Jiang PL (2014) Nutrient limitation induced qualitative changes of fatty acid and caleosin expression in Auxenochlorella protothecoides. Biotechnol Lett 36:175–180

    Article  CAS  PubMed  Google Scholar 

  • Patton JS, Burris JE (1983) Lipid synthesis and extrusion by freshly isolated zooxanthellae (symbiotic algae). Mar Biol 75:131–136

    Article  CAS  Google Scholar 

  • Peled E, Leu S, Zarka AZ, Weiss M, Pick U, Khozin-Goldberg I, Boussiba S (2011) Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae). Lipids 46:851–861

    Article  CAS  PubMed  Google Scholar 

  • Peng CC, Tzen JTC (1998) Analysis of the three essential constituents of oil bodies in developing sesame seeds. Plant Cell Physiol 39:35–42

    Article  CAS  Google Scholar 

  • Peng SE, Wang YB, Wang LH, Chen WNU, Lu CY, Fang LS, Chen CS (2010) Proteomic analysis of symbiosome membranes in cnidaria dinoflagellate endosymbiosis. Proteomics 10:1002–1016

    Article  CAS  PubMed  Google Scholar 

  • Peng SE, Chen WNU, Chen HK, Lu CY, Mayfield AB, Fang LS, Chen CS (2011) Lipid bodies in coral-dinoflagellate endosymbiosis: proteomic and ultrastructural studies. Proteomics 11:3540–3555

    Article  CAS  PubMed  Google Scholar 

  • Peng SE, Chen CS, Song YF, Huang HT, Jiang PL, Chen WNU, Fang LS, Lee YC (2012) Assessment of metabolic modulation in free-living versus endosymbiotic Symbiodinium using synchrotron radiation-based infrared microspectroscopy. Biol Lett 23:434–437

    Article  Google Scholar 

  • Qu R, Wang SM, Lin YH, Vance VB, Huang AHC (1986) Characteristics and biosynthesis of membrane proteins of lipid bodies in the scutella of maize (Zea mays L.). Biochem J 234:57–65

    Article  Google Scholar 

  • Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc Natl Acad Sci 7:2850–2853

    Article  Google Scholar 

  • Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbiosis. Science 251:1348–1351

    Article  CAS  PubMed  Google Scholar 

  • Rowan R, Whitney SM, Fowler A, Yellowlees D (1996) Rubisco in marine symbiotic dinoflagellates: form I1 enzymes in eukaryotic oxygenic phototrophs encodied by a nuclear multigene family. Plant Cell 8:539–553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian host-Symbiosis, diversity, and the effect of climate change. Persp Plant Ecol Evol Syst 8:23–43

    Article  Google Scholar 

  • Stochaj WR, Grossman AR (1997) Differences in the protein profiles of cultured and endosymbiotic Symbiodinium sp. (Pyrrophyta) from the anemone Aiptasia pallid (Anthozoa). J Phycol 33:44–53

    Article  Google Scholar 

  • Tai SSK, Chen MCM, Peng CC, Tzen JTC (2002) Gene family of oleosin isoforms and their structural stabilization in sesame seed oil bodies. Biosci Biotechnol Biochem 66:2146–2153

    Article  CAS  PubMed  Google Scholar 

  • Tzen JTC, Lie GC, Huang AHC (1992) Characterization of the charged components and their topology on the surface of plant seed oil bodies. J Biol Chem 267:15626–15634

    CAS  PubMed  Google Scholar 

  • Tzen JTC, Cao YZ, Laurent P, Ratnayake C, Huang AHC (1993) Lipids, proteins, and structure of seed oil bodies from diverse species. Plant Physiol 101:267–276

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tzen JTC, Peng CC, Cheng DJ, Chen ECF, Chiu JMH (1997) A new method for seed oil body purification and examination of oil body integrity following germination. J Biochem 121:762–768

    Article  CAS  PubMed  Google Scholar 

  • Tzen JTC, Wang MMC, Chen JCF, Lin LJ, Chen MCM (2003) Seed oil body proteins: oleosin, caleosin, and steroleosin. Curr Topics Biochem Res 5:133–139

    Google Scholar 

  • Yang SY, Keshavmurthy S, Obura D, Sheppard CRC, Visram S, Chen CA (2012) Diversity and distribution of Symbiodinium associated with seven common coral species in the chagos archipelago, central Indian ocean. PLoS ONE 7:e35836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu C, Lee Y, Chao T (1997) Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana tk1. J Appl Phycol 9:451–457

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by a grant from the National Science Council, Taiwan, ROC (NSC 102-2313-B-291-001 to PL Jiang).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chii-Shiarng Chen or Pei-Luen Jiang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

Symbiodinium clade identification by Restriction Fragmentation Length Polymorphism (RFLP). The clade of the Symbiodinium cells was identified by RFLP analysis of the n18S-rDNA. The fragments of n18S-rDNA were digested by TaqI and Sau3AI and then resolved by electrophoresis. The RFLP patterns of the freshly isolated and free-living culture Symbiodinium cells were similar to each other. Both were identified as belonging to clade C. (GIF 204 kb)

High Resolution (TIFF 363 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasaribu, B., Lin, IP., Tzen, J.T.C. et al. SLDP: a Novel Protein Related to Caleosin Is Associated with the Endosymbiotic Symbiodinium Lipid Droplets from Euphyllia glabrescens . Mar Biotechnol 16, 560–571 (2014). https://doi.org/10.1007/s10126-014-9574-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-014-9574-z

Keywords

Navigation