Skip to main content
Log in

Identification of a Novel Vanadium-binding Protein by EST Analysis on the Most Vanadium-rich Ascidian, Ascidia gemmata

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Ascidians are known to accumulate extremely high levels of vanadium in their blood cells (up to 350 mM). The branchial sac and the intestine are thought to be the first tissues to contact the outer environment and absorb vanadium ions. The concentration of vanadium in the branchial sac and the intestine of the most vanadium-rich ascidian Ascidia gemmata were determined to be 32.4 and 11.9 mM, respectively. Using an expressed sequence tag (EST) analysis of a cDNA library from the intestine of A. gemmata, we determined 960 ESTs and found 55 clones of metal-related gene orthologs, 6 redox-related orthologs, and 18 membrane transporter orthologs. Among them, two genes, which exhibited significant similarity to the vanadium-binding proteins of other vanadium-rich ascidian species, were designated AgVanabin1 and AgVanabin2. Immobilized metal ion affinity chromatography revealed that recombinant AgVanabin1 bound to metal ions with an increasing affinity for Cu(II) > Zn(II) > Co(II) and AgVanabin2 bound to metal ions with an increasing affinity for Cu(II) > Fe(III) > V(IV). To examine the use of AgVanabins for a metal absorption system, we constructed Escherichia coli strains that expressed AgVanabin1 or AgVanabin2 fused to maltose-binding protein and secreted into the periplasmic space. We found that the strain expressing AgVanabin2 accumulated about 13.5 times more Cu(II) ions than the control TB1 strain. Significant accumulation of vanadium was also observed in the AgVanabin2-expressing strain as seen by a 1.5-fold increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aisen P, Wessling-Resnick M, Leibold EA (1999) Iron metabolism. Bioinorg Chem 3:200–206

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Fukui K, Ueki T, Ohya H, Michibata H (2003) Vanadium-binding protein in a vanadium-rich ascidian Ascidia sydneiensis samea: CW and pulsed EPR studies. J Am Chem Soc 125:6352–6353

    Article  PubMed  CAS  Google Scholar 

  • Grady JK, Shao J, Arosio P, Santambrogio P, Chasteen ND (2000) Vanadyl(IV) binding to mammalian ferritins. An EPR study aided by site-directed mutagenesis. J Inorg Biochem 80:107–113

    Article  PubMed  CAS  Google Scholar 

  • Hamada T, Asanuma M, Ueki T, Hayashi F, Kobayashi N, Yokoyama S, Michibata H, Hirota H (2005) Solution structure of Vanabin2, a vanadium(IV)-binding protein from the vanadium-rich ascidian Ascidia sydneiensis samea. J Am Chem Soc 127:4216–4222

    Article  PubMed  CAS  Google Scholar 

  • Kawakami N, Ueki T, Matsuo K, Gekko K, Michibata H (2006) Selective metal binding by Vanabin2 from the vanadium-rich ascidian, Ascidia sydneiensis samea. Biochim Biophys Acta 1760:1096–1101

    Article  PubMed  CAS  Google Scholar 

  • Kawakami N, Ueki T, Amata Y, Kanamori K, Matsuo K, Gekko K, Michibata H (2009) A novel vanadium reductase, Vanabin2, forms a possible cascade involved in electron transfer. Biochim Biophys Acta 1794:674–679

    Google Scholar 

  • Makabe KW, Kawashima T, Kawashima S, Minokawa T, Adachi A, Kawamura H, Ishikawa H, Yasuda R, Yamamoto H, Kondoh K, Arioka S, Sasakura Y, Kobayashi A, Yagi K, Shojima K, Kondoh Y, Kido S, Tsujinami M, Nishimura N, Takahashi M, Nakamura T, Kanehisa M, Ogasawara M, Nishikata T, Nishida H (2001) Large-scale cDNA analysis of the maternal genetic information in the egg of Halocynthia roretzi for a gene expression catalog of ascidian development. Development 128:2555–2567

    PubMed  CAS  Google Scholar 

  • Michibata H, Terada T, Anada N, Yamakawa K, Numakunai T (1986) The accumulation and distribution of vanadium, iron, and manganese in some solitary ascidians. Biol Bull 171:672–681

    Article  CAS  Google Scholar 

  • Michibata H, Hirata J, Uesaka M, Numakunai T, Sakurai H (1987) Separation of vanadocytes: determination and characterization of vanadium ion in the separated blood cells of the ascidian, Ascidia sydneiensis samea. J Exp Zool 244:33–38

    Article  CAS  Google Scholar 

  • Michibata H, Iwata Y, Hirata J (1991) Isolation of highly acidic and vanadium-containing blood cells from among several types of blood cell from Ascidiidae species by density-gradient centrifugation. J Exp Zool 257:306–313

    Article  Google Scholar 

  • Michibata H, Yamaguchi N, Uyama T, Ueki T (2003) Molecular biological approaches to the accumulation and reduction of vanadium by ascidians. Coord Chem Rev 237:41–51

    Article  CAS  Google Scholar 

  • Michibata H, Yoshinaga M, Yoshihara M, Kawakami N, Yamaguchi N, Ueki T (2007) Genes and proteins involved in vanadium accumulation by ascidians. In: Kustin K, Costa-Pessoa J, Crans DC (eds) Vanadium: the versatile metal. Oxford University Press, Oxford

    Google Scholar 

  • Neu HC, Heppel LA (1965) The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240:3685–3692

    PubMed  CAS  Google Scholar 

  • Satou Y, Yamada L, Mochizuki Y, Takatori N, Kawashima T, Sasaki A, Hamaguchi M, Awazu S, Yagi K, Sasakura Y, Nakayama A, Ishikawa H, Inaba K, Satoh N (2002) A cDNA resource from the basal chordate Ciona intestinalis. Genesis 33:153–154

    Article  PubMed  CAS  Google Scholar 

  • Satou Y, Kawashima T, Kohara Y, Satoh N (2003) Large scale EST analysis in Ciona intestinalis: its application as Northern blot analyses. Dev Genes Evol 213:314–318

    Article  PubMed  CAS  Google Scholar 

  • Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinforma 4:41

    Article  Google Scholar 

  • Trivedi S, Ueki T, Yamaguchi N, Michibata H (2003) Novel vanadium-binding proteins (vanabins) identified in cDNA libraries and the genome of the ascidian Ciona intestinalis. Biochim Biophys Acta 1630:64–70

    PubMed  CAS  Google Scholar 

  • Ueki T, Michibata H (2008) Vanadium–protein interaction inferred from the studies on vanadium-binding proteins in ascidians. In: Alves A (ed) Vanadium compounds/vanadate oligomers in biological systems: chemistry, biochemistry and biological effects. Kerala, Research Signpost

    Google Scholar 

  • Ueki T, Uyama T, Yamamoto K, Kanamori K, Michibata H (2000) Exclusive expression of transketolase in the vanadocytes of the vanadium-rich ascidian, Ascidia sydneiensis samea. Biochim Biophys Acta 1494:83–90

    PubMed  CAS  Google Scholar 

  • Ueki T, Takemoto K, Fayard B, Salome M, Yamamoto A, Kihara H, Susini J, Scippa S, Uyama T, Michibata H (2002) Scanning X-ray microscopy of living and freeze-dried blood cells in two vanadium-rich ascidian species, Phallusia mammillata and Ascidia sydneiensis samea. Zool Sci 19:27–35

    Article  PubMed  Google Scholar 

  • Ueki T, Adachi T, Kawano S, Aoshima M, Yamaguchi N, Kanamori K, Michibata H (2003a) Vanadium-binding proteins (vanabins) from a vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta 1626:43–50

    PubMed  CAS  Google Scholar 

  • Ueki T, Sakamoto Y, Yamaguchi N, Michibata H (2003b) Bioaccumulation of copper ions by Escherichia coli expressing vanabin genes from the vanadium-rich ascidian Ascidia sydneiensis samea. Appl Environ Microbiol 69:6442–6446

    Article  PubMed  CAS  Google Scholar 

  • Ueki T, Kawakami N, Toshishige M, Matsuo K, Gekko K, Michibata H (2009) Characterization of vanadium-binding sites of the vanadium-binding protein Vanabin2 by site-directed mutagenesis. Biochim Biophys Acta 1790:1327–1333

    Article  PubMed  CAS  Google Scholar 

  • Uyama T, Kinoshita T, Takahashi H, Satoh N, Kanamori K, Michibata H (1998a) 6-Phosphogluconate dehydrogenase is a 45-kDa antigen recognized by S4D5, a monoclonal antibody specific to vanadocytes in the vanadium-rich ascidian, Ascidia sydneiensis samea. J Biochem 124:377–382

    PubMed  CAS  Google Scholar 

  • Uyama T, Ueki T, Suhama Y, Kanamori K, Michibata H (1998b) A 100-kDa antigen recognized by a newly prepared monoclonal antibody specific to the vanadocytes of the vanadium-rich ascidian, Ascidia sydneiensis samea, is glycogen phosphorylase. Zool Sci 15:815–821

    Article  CAS  Google Scholar 

  • Uyama T, Yamamoto K, Kanamori K, Michibata H (1998c) Glucose-6-phosphate dehydrogenase in the pentose phosphate pathway is localized in vanadocytes of the vanadium-rich ascidian, Ascidia sydneiensis samea. Zool Sci 15:441–446

    PubMed  CAS  Google Scholar 

  • Yamaguchi N, Togi A, Ueki T, Uyama T, Michibata H (2002) Expressed sequence tag analysis of blood cells in the vanadium-rich ascidian, Ascidia sydneiensis samea—a survey of genes for metal accumulation. Zool Sci 19:1001–1008

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi N, Kamino K, Ueki T, Michibata H (2004) Expressed sequence tag analysis of vanadocytes in a vanadium-rich ascidian, Ascidia sydneiensis samea. Mar Biotechnol (NY) 6:165–174

    Article  CAS  Google Scholar 

  • Yoshihara M, Ueki T, Watanabe T, Yamaguchi N, Kamino K, Michibata H (2005) VanabinP, a novel vanadium-binding protein in the blood plasma of an ascidian, Ascidia sydneiensis samea. Biochim Biophys Acta 1730:206–214

    PubMed  CAS  Google Scholar 

  • Yoshihara M, Ueki T, Yamaguchi N, Kamino K, Michibata H (2008) Characterization of a novel vanadium-binding protein (VBP-129) from blood plasma of the vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta 1780:256–263

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga M, Ueki T, Yamaguchi N, Kamino K, Michibata H (2006) Glutathione transferases with vanadium-binding activity isolated from the vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta 1760:495–503

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga M, Ueki T, Michibata H (2007) Metal binding ability of glutathione transferases conserved between two animal species, the vanadium-rich ascidian Ascidia sydneiensis samea and the schistosome Schistosoma japonicum. Biochim Biophys Acta 1770:1413–1418

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the staff at Kojima Port, Okayama, Japan, for their help in collecting adult ascidians. DNA sequencing was performed at the Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University. Financial support was provided in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan (#20570070 and #21570077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Ueki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samino, S., Michibata, H. & Ueki, T. Identification of a Novel Vanadium-binding Protein by EST Analysis on the Most Vanadium-rich Ascidian, Ascidia gemmata . Mar Biotechnol 14, 143–154 (2012). https://doi.org/10.1007/s10126-011-9396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-011-9396-1

Keywords

Navigation