Skip to main content

Advertisement

Log in

Exposure to dsRNA Elicits RNA Interference in Brachionus manjavacas (Rotifera)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

RNA interference (RNAi) is a powerful technique for functional genomics, yet no studies have reported its successful application to zooplankton. Many zooplankton, particularly microscopic metazoans of phylum Rotifera, have unique life history traits for which genetic investigation has been limited. In this paper, we report the development of RNAi methods for rotifers, with the exogenous introduction of double-stranded RNA (dsRNA) through the use of a lipofection reagent. Transfection with dsRNA for heat shock protein 90, the membrane-associated progesterone receptor, and mitogen-activated protein kinase significantly increased the proportion of non-reproductive females. Additionally, a fluorescence-based lectin binding assay confirmed the significant suppression of four of six glycosylation enzymes that were targeted with dsRNA. Suppression of mRNA transcripts was confirmed with quantitative PCR. Development of RNAi for rotifers promises to enhance the ability for assessing genetic regulation of features critical to their life history and represents a key step toward functional genomics research in zooplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Boell LA, Bucher G (2008) Whole-mount in situ hybridization in the Rotifer Brachionus plicatilis representing a basal branch of lophotrochozoans. Dev Genes Evol 218:445–451

    Article  PubMed  CAS  Google Scholar 

  • Cerutti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50:81–99

    Article  PubMed  CAS  Google Scholar 

  • Chera S, de Rosa R, Miljkovic-Licina M, Dobretz K, Ghila L, Kaloulis K, Galliot B (2006) Silencing of the hydra serine protease inhibitor Kazal1 gene mimics the human SPINK1 pancreatic phenotype. J Cell Sci 119:846–857

    Article  PubMed  CAS  Google Scholar 

  • Clemens JC, Worby CA, Simonson-Leff N, Muda M, Maehama T, Hemmings BA, Dixon JE (2000) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci USA 97:6499–6503

    Article  PubMed  CAS  Google Scholar 

  • Dalby B, Cates S, Harris A, Ohki EC, Tilkins ML, Price PJ, Ciccarone VC (2004) Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods 33:95–103

    Article  PubMed  CAS  Google Scholar 

  • Denekamp NY, Thorne MAS, Clark MS, Kube M, Reinhardt R, Lubzens E (2009) Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics 10:108

    Article  PubMed  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sorensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745

    Article  PubMed  CAS  Google Scholar 

  • Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection—a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Fontaneto D, Giordani I, Melone G, Serra M (2007) Disentangling the morphological stasis in two rotifer species of the Brachionus plicatilis species complex. Hydrobiologia 583:297–307

    Article  Google Scholar 

  • Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408:325–330

    Article  PubMed  CAS  Google Scholar 

  • Gilbert JJ (1983) Rotifera. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates, vol I. Oogenesis, oviposition, and oosorption. Wiley, New York, pp 181–209

    Google Scholar 

  • Gomez A, Serra M, Carvalho GR, Lunt DH (2002) Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution 56:1431–1444

    PubMed  CAS  Google Scholar 

  • Guerra C, Wada Y, Leick V, Bell A, Satir P (2003) Cloning, localization, and axonemal function of Tetrahymena centrin. Mol Biol Cell 14:251–261

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen LB, Calvin SA, Colvin KE, Wright M (2004) FuGENE 6 transfection reagent: the gentle power. Methods 33:104–112

    Article  PubMed  CAS  Google Scholar 

  • Jakob W, Schierwater B (2007) Changing hydrozoan bauplans by silencing Hox-like genes. PLoS ONE 2:e694

    Article  PubMed  Google Scholar 

  • Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237

    Article  PubMed  CAS  Google Scholar 

  • Kennerdell JR, Yamaguchi S, Carthew RW (2002) RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E. Genes Dev 16:1884–1889

    Article  PubMed  CAS  Google Scholar 

  • Lai SR, Andrews LG, Tollefsbol TO (2008) hTERT knockdown in human embryonic kidney cells using double-stranded RNA. Meth Mol Biol 405:23–29

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \( {{2}^{ - \Delta \Delta C{\rm{T}}}} \) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mehier-Humbert S, Guy RH (2005) Physical methods for gene transfer: improving the kinetics of gene delivery into cells. Adv Drug Del Rev 57:733–753

    Article  CAS  Google Scholar 

  • Novina CD, Sharp PA (2004) The RNAi revolution. Nature 430:161–164

    Article  PubMed  CAS  Google Scholar 

  • Orii H, Mochii M, Watanabe K (2003) A simple “soaking method” for RNA interference in the planarian Dugesia japonica. Dev Genes Evol 213:138–141

    PubMed  CAS  Google Scholar 

  • Paps J, Baguna J, Riutort M (2009) Lophotrochozoa internal phylogeny: new insights from an up-to-date analysis of nuclear ribosomal genes. Proc R Soc B: Biol Sci 276:1245–1254

    CAS  Google Scholar 

  • Patel A, Fondrk MK, Kaftanoglu O, Emore C, Hunt G, Frederick K, Amdam GV (2007) The making of a queen: TOR pathway is a key player in diphenic caste development. PLoS ONE 2:e509

    Article  PubMed  Google Scholar 

  • Ricci C (2001) Dormancy patterns in rotifers. Hydrobiologia 446:1–11

    Article  Google Scholar 

  • Schmitt A, Nebreda AR (2002) Signalling pathways in oocyte meiotic maturation. J Cell Sci 115:2457–2459

    PubMed  CAS  Google Scholar 

  • Schroder T (2005) Diapause in monogonont rotifers. Hydrobiologia 546:291–306

    Article  Google Scholar 

  • Serra M, Gomez A, Carmona MJ (1998) Ecological genetics of Brachionus sympatric sibling species. Hydrobiologia 388:373–384

    Article  Google Scholar 

  • Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23:578–587

    Article  PubMed  Google Scholar 

  • Shearer TL, Snell TW (2007) Transfection of siRNA into Brachionus plicatilis (Rotifera). Hydrobiologia 593:141–150

    Article  CAS  Google Scholar 

  • Snell TW (1998) Chemical ecology of rotifers. Hydrobiologia 388:267–276

    Article  Google Scholar 

  • Snell TW, Nacionales MA (1990) Sex-pheromone communication in Brachionus plicatilis (Rotifera). Comp Biochem Physiol 97:211–216

    Article  Google Scholar 

  • Snell TW, Stelzer CP (2005) Removal of surface glycoproteins and transfer among Brachionus species. Hydrobiologia 546:267–274

    Article  CAS  Google Scholar 

  • Snell TW, DesRosiers NJD (2008) Effect of progesterone on sexual reproduction of Brachionus manjavacas (Rotifera). J Exp Mar Biol Ecol 363:104–109

    Article  CAS  Google Scholar 

  • Snell TW, Kubanek J, Carter W, Payne AB, Kim J, Hicks MK, Stelzer CP (2006) A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera). Mar Biol 149:763–773

    Article  CAS  Google Scholar 

  • Snell TW, Kim J, Zelaya E, Resop R (2007) Mate choice and sexual conflict in Brachionus plicatilis (Rotifera). Hydrobiologia 593:151–157

    Article  Google Scholar 

  • Snell TW, Shearer TL, Smith HA, Kubanek J, Gribble KE, Mark Welch DB (2009) Genetic determinants of mate recognition in Brachionus manjavacas (Rotifera). BMC Biol 7:60

    Article  PubMed  Google Scholar 

  • Sorgeloos P, Dhert P, Candreva P (2001) Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 200:147–159

    Article  Google Scholar 

  • Stelzer CP (2005) Evolution of rotifer life histories. Hydrobiologia 546:335–346

    Article  Google Scholar 

  • Suga K, Welch DM, Tanaka Y, Sakakura Y, Hagiwara A (2007) Analysis of expressed sequence tags of the cyclically parthenogenetic rotifer Brachionus plicatilis. PLoS ONE 2:e671

    Article  PubMed  Google Scholar 

  • Tiscornia G, Singer O, Ikawa M, Verma IM (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci USA 100:1844–1848

    Article  PubMed  CAS  Google Scholar 

  • Varma R, Cheng A (2008) Calculating gene expression changes and variability in siRNA experiments. Applied Biosystems TechNotes 15(2):10–11

    Google Scholar 

  • Whangbo JS, Hunter CP (2008) Environmental RNA interference. Trends Genet 24:297–305

    Article  PubMed  CAS  Google Scholar 

  • Whyard S, Singh AD, Wong S (2009) Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem Mol Biol 39:824–832

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation grant BE/GenEn MCB-0412674 to TWS. We thank D. Mark Welch for providing access to the rotifer transcriptome database (GMOD) and J. Hatt and F. Loeffler for assistance with the qPCR. Undergraduates Sohee Park, Joseph Bear, Ashleigh Burns, and Michael Cray helped with PCR, dsRNA synthesis, or the bioassays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry W. Snell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snell, T.W., Shearer, T.L. & Smith, H.A. Exposure to dsRNA Elicits RNA Interference in Brachionus manjavacas (Rotifera). Mar Biotechnol 13, 264–274 (2011). https://doi.org/10.1007/s10126-010-9295-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-010-9295-x

Keywords

Navigation