Skip to main content

Advertisement

Log in

Pyrethroids as Promising Marine Antifoulants: Laboratory and Field Studies

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Due to the regulations and bans regarding the use of traditional toxic chemicals against marine fouling organisms and the practical impediments to the commercialization of natural product antifoulants, there is an urgent need for compounds that are antifouling-active, environmentally friendly, and have a potential for commercial application. In this study, a series of common, commercially available pyrethroid products, which are generally used as environmentally safe insecticides, was evaluated for antifouling activity in the laboratory using an anti-settlement test with cyprids of the barnacle Balanus albicostatus and also in a field experiment. Laboratory assay showed that all eleven pyrethroids (namely, rich d-trans-allethrin, Es-biothrin, rich d-prallethrin, S-prallethrin, tetramethrin, rich d-tetramethrin, phenothrin, cyphenothrin, permethrin, cypermethrin, and high active cypermethrin) were able to inhibit barnacle settlement (EC50 range of 0.0316 to 87.00 μg/ml) without significant toxicity. Analysis of structure–activity relationships suggested that the cyano group at the α-carbon position had a significant influence on the expression of antifouling activity in pyrethroids. In the field, the antifouling activity of pyrethroids was further confirmed, with the most potent pyrethroids being cypermethrin and high active cypermethrin, which displayed efficiency comparable with that of tributyltin. In summary, our investigation indicated that these pyrethroids have a great and practical commercial potential as antifouling agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abarzua S, Jakubowski S (1995) Biotechnological investigation for the prevention of biofouling. I. Biological and biochemical principles for the prevention of biofouling. Mar Ecol Prog Ser 123:301–312

    Article  CAS  Google Scholar 

  • Alberte RS, Snyder S, Zahuranec B (1992) Biofouling research needs for the United States Navy: program history and goals. Biofouling 6:91–95

    Article  Google Scholar 

  • Burgess JG, Boyd KG, Armstrong E, Jiang Z, Yan L, Berggren M, May U, Pisacane T, Granmo A, Adams DR (2003) The development of a marine natural product-based antifouling paint. Biofouling 19S:197–205

    Article  CAS  Google Scholar 

  • Cardwell RD, Brancato MS, Toll J, DeForest D, Tear L (1999) Aquatic ecological risks posed by tributyltin in United States surface waters: pre-1989 to 1996 data. Environ Toxicol Chem 18:567–577

    Article  CAS  Google Scholar 

  • Clare AS (1996) Marine natural product antifoulants: status and potential. Biofouling 9:211–229

    Article  CAS  Google Scholar 

  • Clare AS (1998) Towards non-toxic antifouling. J Mar Biotechnol 6:3–6

    CAS  Google Scholar 

  • Clare AS, Rittschof D, Gerhart DJ, Maki JS (1992) Molecular approaches to nontoxic antifouling. Invert Reprod Dev 22:67–76

    CAS  Google Scholar 

  • Cragg SM, Eaton RA (1997) Evaluation of creosote fortified with synthetic pyrethroids as wood preservatives for use in the sea. II Effects on wood-degrading micro-organisms and fouling invertebrates. Mater Org 31:197–216

    CAS  Google Scholar 

  • Eaton RA, Cragg SM (1996) Evaluation of creosote fortified with synthetic pyrethroids as wood preservatives for use in the sea Part 1: efficacy against marine wood-boring molluscs and crustaceans. Mater Org 29:211–229

    Google Scholar 

  • Ellis DV (1991) New dangerous chemicals in the environment: lessons from TBT. Mar Pollut Bull 22:8–10

    Article  Google Scholar 

  • Ensley S (2007) Pyrethrins and pyrethroids. In: Gupta RC (ed) Veterinary toxicology: basic and clinical principles. Elsevier, New York, pp 494–498

    Google Scholar 

  • Etoh H, Kondoh T, Noda R, Singh IP, Sekiwa Y, Morimitsu K, Kubota K (2002) Shogaols from Zingiber officinale as promising antifouling agents. Biosci Biotech Biochem 66:1748–1750

    Article  CAS  Google Scholar 

  • Fernández-Álvarez M, Sánchez-Prado L, Lores M, Llompart M, García-Jares C, Cela R (2007) Alternative sample preparation method for photochemical studies based on solid phase microextraction: synthetic pyrethroid photochemistry. J Chromatogr A 1152:156–167

    Article  PubMed  CAS  Google Scholar 

  • Friberg-Jensen U, Wendt-Rasch L, Woin P, Christoffersen K (2003) Effects of the pyrethroid insecticide, cypermethrin, on a freshwater community studied under field conditions. I. Direct and indirect effects on abundance measures of organisms at different trophic levels. Aquat Toxicol 63:357–371

    Article  PubMed  CAS  Google Scholar 

  • Fusetani N (2004) Biofouling and antifouling. Nat Prod Rep 21:94–104

    Article  PubMed  CAS  Google Scholar 

  • Fusetani N, Clare A (2006) Antifouling compounds. Springer, Berlin

    Google Scholar 

  • Goka K (1999) Embryotoxicity of zinc pyrithione, an antidandruff chemical, in fish. Environ Res Sect A 81:81–83

    Article  CAS  Google Scholar 

  • Hadnagy W, Leng G, Sugiri D, Ranft U, Idel H (2003) Pyrethroids used indoors-Immune status of humans exposed to pyrethroids following a pest control operation—a one year follow-up study. Int J Hyg Environ Health 206:93–102

    Article  PubMed  CAS  Google Scholar 

  • Hamilton MA, Russo RC, Thurston RV (1977) Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11:714–719

    Article  CAS  Google Scholar 

  • Hamilton MA, Russo RC, Thurston RV (1978) Correction to: Hamilton MA, Russo RC, Thurston RV (1977) Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11:714–719 (Environ Sci Technol 12, 417)

    Article  Google Scholar 

  • Hellio C, Tsoukatou M, Maréchal JP, Aldred N, Beaupoil C, Clare AS, Vagias C, Roussis V (2005) Inhibitory effects of Mediterranean sponge extracts and metabolites on larval settlement of the barnacle Balanus amphitrite. Mar Biotechnol 7:297–305

    Article  PubMed  CAS  Google Scholar 

  • Helliwell S, Stevens MM (2000) Efficacy and environmental fate of alphacypermethrin applied to rice fields for the control of chironomid midge larvae (Diptera: Chironomidae). Field Crops Res 67:263–272

    Article  Google Scholar 

  • Kitano Y, Nogata Y, Shinshima K, Yoshimura E, Chiba K, Tada M, Sakaguchi I (2004) Synthesis and anti-barnacle activities of novel isocyanocyclohexane compounds containing an ester or an ether functional group. Biofouling 20:93–100

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, Okamura H (2002) Effects of new antifouling compounds on the development of sea urchin. Mar Pollut Bull 44:748–751

    Article  PubMed  CAS  Google Scholar 

  • Konstantinou IK, Albanis TA (2004) Worldwide occurrence and effect of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30:235–248

    Article  PubMed  CAS  Google Scholar 

  • Leahey JP (1985) The pyrethroid insecticides. Taylor & Francis, London

    Google Scholar 

  • Lutnicka H, Bogacka T, Wolska L (1999) Degradation of pyrethroids in an aquatic ecosystem model. Wat Res 33:3441–3446

    Article  CAS  Google Scholar 

  • Narahashi T (1992) Nerve membrane Na+ channels as targets of insecticides. Trends Pharmacol Sci 13:236–241

    Article  PubMed  CAS  Google Scholar 

  • Narahashi T (1996) Neuronal ion channels as the target sites of insecticides. Pharmacol Toxicol 79:1–14

    PubMed  CAS  Google Scholar 

  • Narahashi T (2002) Nerve membrane ion channels as the target site of insecticides. Mini Rev Med Chem 2:419–432

    Article  PubMed  CAS  Google Scholar 

  • Narahashi T, Ginsburg K, Nagata K, Song J, Tatebayashi H (1998) Ion channels as targets for insecticides. Neurotoxicology 19:581–590

    PubMed  CAS  Google Scholar 

  • Okamura H, Aoyama I, Liu D, Maguire RJ, Pacepavicius GJ, Lau YL (2000a) Fate and ecotoxicity of the new antifouling compound Irgarol 1051 in the aquatic environment. Water Res 34:3523–3530

    Article  CAS  Google Scholar 

  • Okamura H, Aoyama I, Takami T, Maruyama T, Suzuki Y, Matumoto M, Katsuyama I, Hamada J, Beppu T, Tanaka O, Maguire RJ, Liu D, Lau YL, Pacepavicius GJ (2000b) Phytotoxicity of the new antifouling compound Irgarol 1051 and a major degradation product. Mar Pollut Bull 40:754–763

    Article  CAS  Google Scholar 

  • Okamura H, Watanabe T, Aoyama I, Hasobe M (2002) Toxicity evaluation of new antifouling compounds using suspension-cultured fish cells. Chemosphere 46:945–951

    Article  PubMed  CAS  Google Scholar 

  • Paul VJ, Puglisi MP, Ritson-Williams R (2006) Marine chemical ecology. Nat Prod Rep 23:153–180

    Article  PubMed  CAS  Google Scholar 

  • Reichelt-Brushett AJ, Michalek-Wagner K (2005) Effects of copper on the fertilization success of the soft coral Lobophytum compactum. Aquat Toxicol 74:280–284

    Article  PubMed  CAS  Google Scholar 

  • Rittschof D (1999) Fouling and natural products as antifoulants. In: Fingerman M, Nagabhushanam R, Thompson MF (eds) Recent advances in marine biotechnology. Oxford & IBH Publishing Co, Dew Delhi, pp 245–257

    Google Scholar 

  • Rittschof D (2000) Natural product antifoulants: one perspective on the challenges related to coatings developments. Biofouling 15:119–127

    Article  CAS  Google Scholar 

  • Rittschof D (2001) Natural product antifoulants and coatings developments. In: McClintock JB, Baker BJ (eds) Marine chemical Ecology. CRC, Boca Raton, pp 543–566

    Google Scholar 

  • Rittschof D, Clare AS, Gerhart DJ, Mary SA, Bonaventura J (1992) Barnacle in vitro assays for biologically active substances: toxicity and settlement inhibition assays using mass cultured Balanus amphitrite amphitrite Darwin. Biofouling 6:115–122

    Article  CAS  Google Scholar 

  • Rittschof D, Lai CH, Kok LM, Teo SLM (2003) Pharmaceuticals as antifoulants: concept and principles. Biofouling 19S:207–212

    Article  CAS  Google Scholar 

  • Shade WD, Hurt SS, Jacobson AH, Reinert KH (1993) Ecological risk assessment of a novel marine antifoulant. In: Gorsuch JW, Dwyer FJ, Ingersoll CG, La Point TW (eds) Environmental Toxicology and risk assessment, ASTM STP 1173, Vol. 2. American Society for Testing and Materials, Philadelphia, pp 381–408

    Google Scholar 

  • Sumida K, Saito K, Ooe N, Isobe N, Kaneko H, Nakatsuka I (2001) Evaluation of in vitro methods for detecting the effects of various chemicals on the human progesterone receptor, with a focus on pyrethroid insecticides. Toxicol Lett 118:147–155

    Article  PubMed  CAS  Google Scholar 

  • Surrallés J, Xamena N, Creus A, Catalán J, Norppa H, Marcos R (1995) Induction of micronuclei by five pyrethroid insecticides in whole-blood and isolated human lymphocyte cultures. Mutation Res 341:169–184

    Article  PubMed  Google Scholar 

  • Takasawa R, Etoh H, Yagi A, Sakata K, Ina K (1990) Nonylphenols as promising antifouling agents found by a simple bioassay method using the blue mussel, Mytilus edulis. Agric Biol Chem 54:1607–1610

    CAS  Google Scholar 

  • Targett NM (1997) Natural antifouling compounds from marine organisms: A review. In: Nagabhushanam R, Thompson MF (eds) Fouling organisms of the Indian Ocean: biology and control technology. Oxford and IBH Publishing Co, New Delhi, pp 85–103

    Google Scholar 

  • Thomas KV (2001) The environmental fate and behaviour of antifouling paint booster biocides: a review. Biofouling 17:73–86

    Article  CAS  Google Scholar 

  • Thomas KV, McHugh M, Hilton M, Waldock M (2002) Antifouling paint booster biocides in UK coastal waters: inputs, occurrence and environmental fate. Sci Total Environ 293:117–127

    Article  PubMed  CAS  Google Scholar 

  • Thomas KV, McHugh M, Hilton M, Waldock M (2003) Increased persistence of antifouling paint biocides when associated with paint particles. Environ Pollut 123:153–161

    Article  PubMed  CAS  Google Scholar 

  • Townsin RL (2003) The ship hull fouling penalty. Biofouling 19S:9–15

    Article  Google Scholar 

  • Turley PA, Fenn RJ, Ritter JC (2000) Pyrithiones as antifoulants: environmental chemistry and preliminary risk assessment. Biofouling 15:175–182

    Article  CAS  Google Scholar 

  • van Wezel AP, van Wlaardingen P (2004) Environmental risk limits for antifouling substances. Aquat Toxicol 66:427–444

    Article  PubMed  CAS  Google Scholar 

  • Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104

    Article  CAS  Google Scholar 

  • Zhou JL, Rowland S, Mantoura RFC (1995) Partition of synthetic pyrethroid insecticides between dissolved and particulate phases. Water Res 29:1023–1031

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to Dr. Dan Rittschof for his constructive suggestions. Thanks are also due to Professor John Hodgkiss for his help in the preparation of the manuscript. This research was supported by Xiamen Sci-Tech Bureau under contract No. 3502Z20073014 and the National Natural Science Foundation of China (NNSFC) under contract No. 40276041 and contract No. 40676081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caihuan Ke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, D., Ke, C., Li, S. et al. Pyrethroids as Promising Marine Antifoulants: Laboratory and Field Studies. Mar Biotechnol 11, 153–160 (2009). https://doi.org/10.1007/s10126-008-9130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-008-9130-9

Keywords

Navigation