Skip to main content

Advertisement

Log in

Sustainable Production of Bioactive Compounds by Sponges—Cell Culture and Gene Cluster Approach: A Review

  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Sponges (phylum Porifera) are sessile marine filter feeders that have developed efficient defense mechanisms against foreign attackers such as viruses, bacteria, or eukaryotic organisms. Protected by a highly complex immune system, as well as by the capacity to produce efficient antiviral compounds (e.g., nucleoside analogues), antimicrobial compounds (e.g., polyketides), and cytostatic compounds (e.g., avarol), they have not become extinct during the last 600 million years. It can be assumed that during this long period of time, bacteria and microorganisms coevolved with sponges, and thus acquired a complex common metabolism. It is suggested that (at least) some of the bioactive secondary metabolites isolated from sponges are produced by functional enzyme clusters, which originated from the sponges and their associated microorganisms. As a consequence, both the host cells and the microorganisms lost the ability to grow independently from each other. Therefore, it was—until recently—impossible to culture sponge cells in vitro. Also the predominant number of “symbiotic bacteria” proved to be nonculturable. In order to exploit the bioactive potential of both the sponge and the “symbionts,” a 3D-aggregate primmorph culture system was established; also it was proved that one bioactive compound, avarol/avarone, is produced by the sponge Dysidea avara. Another promising way to utilize the bioactive potential of the microorganisms is the cloning and heterologous expression of enzymes involved in secondary metabolism, such as the polyketide synthases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. K. Althoff C. Schütt R. Steffen R. Batel W.E.G. Müller (1998) ArticleTitleEvidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: harbor also for putatively-toxic bacteria? Mar Biol 130 529–536 Occurrence Handle10.1007/s002270050273

    Article  Google Scholar 

  2. F.M. Ausubel R. Brent R.E. Kingston D.D. Moore J.A. Smith J.G. Seidmann K. Struhl (1995) Current Protocols in Molecular Biology. John Wiley and Sons New York, N.Y.

    Google Scholar 

  3. J. Beck S. Ripka A. Siegner E. Schiltz E. Schweizer (1990) ArticleTitleThe multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum: its gene structure relative to that of other polyketide synthases. Eur J Biochem 192 487–498 Occurrence Handle1:CAS:528:DyaK3MXjs12gtQ%3D%3D

    CAS  Google Scholar 

  4. C.A. Bewley D.J. Faulkner (1998) ArticleTitleLithistid sponges: star performers or hosts to the stars? Angew Chem (Int Ed Eng) 37 2162–2178 Occurrence Handle10.1002/(SICI)1521-3773(19980904)37:16<2162::AID-ANIE2162>3.3.CO;2-U

    Article  Google Scholar 

  5. M. Böhm U. Hentschel A. Friedrich L. Fieseler R. Steffen V. Gamulin I.M. Müller W.E.G. Müller (2001) ArticleTitleMolecular response of the sponge Suberites domuncula to bacterial infection. Mar Biol 139 1037–1045 Occurrence Handle10.1007/s002270100656

    Article  Google Scholar 

  6. M. Böhm V. Gamulin H.C. Schröder W.E.G. Müller (2002) ArticleTitleEvolution of osmosensing signal transduction in Metazoa: stress activated protein kinases p38 and JNK. Cell Tissue Res 308 431–438

    Google Scholar 

  7. G. Cimino S. De Rosa S. De Stefano (1984) ArticleTitleAntiviral agents from a gorgonian, Eunicella cavolini. Experientia 40 339–340 Occurrence Handle1:CAS:528:DyaL2cXkt1SrsrY%3D

    CAS  Google Scholar 

  8. M.R. Custodio I. Prokic R. Steffen C. Koziol R. Borojevic F. Brümmer M. Nickel W.E.G. Müller (1998) ArticleTitlePrimmorphs generated from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell proliferation and cell death. Mech Ageing Dev 105 45–59 Occurrence Handle1:CAS:528:DyaK1cXmt1ersb8%3D Occurrence Handle9922118

    CAS  PubMed  Google Scholar 

  9. M.O. Dayhoff R.M. Schwartz B.C. Orcutt (1978) A model of evolutionary change in protein. M.O. Dayhoff (Eds) Atlas of Protein Sequence and Structure. Nat Biomed. Res. Foundation Washington, D.C. 345–352

    Google Scholar 

  10. J. Felsenstein (1993) PHYLIP, Version 3.5. University of Washington Seattle

    Google Scholar 

  11. A.B. Friedrich J. Hacker I. Fischer P. Proksch U. Hentschel (2001) ArticleTitleTemporal variations of the microbial community associated with the mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 38 105–113 Occurrence Handle10.1016/S0168-6496(01)00185-4 Occurrence Handle1:CAS:528:DC%2BD38XitV2h

    Article  CAS  Google Scholar 

  12. V.A. Grebenjuk A. Kuusksalu M. Kelve J. Schütze H.C. Schröder W.E.G. Müller (2002) ArticleTitleInduction of (2′-5′)oligoadenylate synthetase in the marine sponges Suberites domuncula and Geodia cydonium by the bacterial endotoxin lipopolysaccharide. Eur J Biochem 269 1382–1392 Occurrence Handle10.1046/j.1432-1033.2002.02781.x Occurrence Handle1:CAS:528:DC%2BD38Xit1CnsrY%3D Occurrence Handle11874452

    Article  CAS  PubMed  Google Scholar 

  13. D.L. Hawksworth M.T. Kalin-Arroyo (1995) Magnitude and distribution of biodiversity. V.H. Heywood R.T. Watson (Eds) Global Biodiversity and Assessment. Cambridge University Press Cambridge, U.K. 107–191

    Google Scholar 

  14. M.G. Haygood E.W. Schmidt S.K. Davidson D.L. Faulkner (1999) ArticleTitleMicrobial symbionts of marine invertebrates: opportunities for microbial biotechnology. J Mol Microbiol Biotechnol 1 33–43 Occurrence Handle1:CAS:528:DyaK1MXls12ru70%3D Occurrence Handle10941782

    CAS  PubMed  Google Scholar 

  15. C. Holst-Hansen N. Brümmer (1998) MTT-cell proliferation assay. J.E. Cellis (Eds) Cell Biology—A Laboratory Handbook. Academic Press San Diego, Calif 1:16–18

    Google Scholar 

  16. C.M. Kao L. Katz C. Khosia (1994) ArticleTitleEngineered biosynthesis of a complete macrolactone in a heterologous host. Science 265 509–512 Occurrence Handle1:CAS:528:DyaK2cXmtVens7c%3D Occurrence Handle8036492

    CAS  PubMed  Google Scholar 

  17. C. Khosla R.S. Gokhale J.R. Jacobsen D.E. Cane (1994) ArticleTitleTolerance and specificity of polyketide synthetases. Annu Rev Biocehm 68 219–253 Occurrence Handle10.1146/annurev.biochem.68.1.219

    Article  Google Scholar 

  18. C. Koziol R. Borojevic R. Steffen W.E.G. Müller (1998) ArticleTitleSponges (Porifera) model systems to study the shift from immortal to senescent somatic cells: the telomerase activity in somatic cells. Mech Ageing Dev 100 107–120 Occurrence Handle10.1016/S0047-6374(97)00120-6 Occurrence Handle1:CAS:528:DyaK1cXhsFenu7s%3D Occurrence Handle9541132

    Article  CAS  PubMed  Google Scholar 

  19. A. Krasko H.C. Schröder R. Batel V.A. Grebenjuk R. Steffen I.M. Müller W.E.G. Müller (2002) ArticleTitleIron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula. DNA Cell Biol 21 67–80 Occurrence Handle10.1089/10445490252810320 Occurrence Handle1:CAS:528:DC%2BD38XitVeiuro%3D Occurrence Handle11879581

    Article  CAS  PubMed  Google Scholar 

  20. G. Le Pennec S. Perovic M.S.A. Ammar V.A. Grebenjuk R. Steffen F. Brümmer W.E.G. Müller (2002) ArticleTitleCultivation of primmorphs from the marine sponge Suberites domuncula: morphogenetic potential of silicon and iron: review. J Biotechnol. 100 93–108 Occurrence Handle10.1016/S0168-1656(02)00259-6

    Article  Google Scholar 

  21. B.S. Moore J. Piel (2000) ArticleTitleEngineering biodiversity with type II polyketide synthase genes. Antonie Van Leeuwenhoek 78 391–398 Occurrence Handle1:CAS:528:DC%2BD3MXktVOgs78%3D Occurrence Handle11386362

    CAS  PubMed  Google Scholar 

  22. H. Motamedi A. Shafiee (1998) ArticleTitleThe biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506. Eur J Biochem 256 528–534 Occurrence Handle10.1046/j.1432-1327.1998.2560528.x Occurrence Handle1:CAS:528:DyaK1cXmtlCgtbg%3D Occurrence Handle9780228

    Article  CAS  PubMed  Google Scholar 

  23. W.E.G. Müller (1995) ArticleTitleMolecular phylogeny of Metazoa (animals): monophyletic origin. Naturwiss 82 321–329 Occurrence Handle7643908

    PubMed  Google Scholar 

  24. W.E.G. Müller (2001) ArticleTitleHow was metazoan threshold crossed: the hypothetical , Urmetazoa. Comp Biochem Physiol (A) 129 433–460

    Google Scholar 

  25. Müller, W.E.G., and Brümmer, F. (1998). Herstellung von Primmorphen aus dissoziierten Zellen von Schwämmen, Korallen und weiteren Invertebraten: Verfahren zur Kultivierung von Zellen von Schwämmen und weiteren Invertebraten zur Produktion und Detektion von bioaktiven Substanzen, zur Detektion von Umweltgiften und zur Kultivierung dieser Tiere in Aquarien und im Freiland. German, European and international patent application (DE 198 24 384).

  26. W.E.G. Müller R.K. Zahn M.J. Gasic N. Dogovic A. Maidhof C. Becker B. Diehl-Seifert E. Eich (1985a) ArticleTitleAvarol, a cytostatically active compound from the marine sponge Dysidea avara. Comp Biochem Physiol 80C 47–52

    Google Scholar 

  27. W.E.G. Müller A. Maidhof R.K. Zahn H.C. Schröder M.J. Gasic D. Heidemann A. Bernd B. Kurelec E. Eich G. Seibert (1985b) ArticleTitlePotent antileukemic activity of the novel cytostatic agent avarone and its analogues in vitro and in vivo. Cancer Res 45 4822–4827

    Google Scholar 

  28. W.E.G. Müller B. Blumbach I.M. Müller (1999a) ArticleTitleEvolution of the innate and adaptive immune systems: relationships between potential immune molecules in the lowest metazoan phylum [Porifera] and those in vertebrates. Transplantation 68 1215–1227 Occurrence Handle10.1097/00007890-199911150-00001

    Article  Google Scholar 

  29. W.E.G. Müller M. Wiens R. Batel R. Steffen R. Borojevic M.R. Custodio (1999b) ArticleTitleEstablishment of a primary cell culture from a sponge: primmorphs from Suberites domuncula. Mar Ecol Progr Ser 178 205–219

    Google Scholar 

  30. W.E.G. Müller M. Böhm R. Batel S. De Rosa G. Tommonaro I.M. Müller H.C. Schröder (2000) ArticleTitleApplication of cell culture for the production of bioactive compounds from sponges: synthesis of avarol by primmorphs from Dysidea avara. J Nat Proc 63 1077–1081 Occurrence Handle10.1021/np000003p

    Article  Google Scholar 

  31. M. Nickel S. Leininger G. Proll F. Brümmer (2001) ArticleTitleComparative studies on two potential methods for the biotechnological production of sponge biomass. J Biotechnol 92 169–178 Occurrence Handle10.1016/S0168-1656(01)00357-1 Occurrence Handle1:CAS:528:DC%2BD3MXnsF2hs7Y%3D Occurrence Handle11640986

    Article  CAS  PubMed  Google Scholar 

  32. P. Proksch (1994) ArticleTitleDefensive roles for secondary metabolites from marine sponges and sponge feeding-nudibranchs. Toxicon 32 639–655 Occurrence Handle1:CAS:528:DyaK2cXltVCns7o%3D Occurrence Handle7940572

    CAS  PubMed  Google Scholar 

  33. PROSITE (2002). Available at www.expasy.org/cgi-bin .

  34. B.J. Rawlings (1997) ArticleTitleBiosynthesis of polyketides. Natural Product Rep 1997 523–556

    Google Scholar 

  35. J. Reitner G. Schumann-Kin (1999) ArticleTitleOrigin and early fossil records of sponges—a geobiological approach. Memoire Queensland Museum 44 515

    Google Scholar 

  36. B. Rinkevich (1999) ArticleTitleCell cultures from marine invertebrates: obstacles, new approaches and recent improvements. J Biotechnol 70 133–153 Occurrence Handle10.1016/S0168-1656(99)00067-X Occurrence Handle1:CAS:528:DyaK1MXjs1Shs7k%3D

    Article  CAS  Google Scholar 

  37. J. Sambrook E.F. Fritsch T. Maniatis (1989) Analysis and cloning of eukaryotic genomic DNA. Molecular Cloning—A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press Cold Spring Harbor, N.Y. Occurrence Handle1:STN:280:By%2BD2cvgvFQ%3D Occurrence Handle2572969

    CAS  PubMed  Google Scholar 

  38. P.S. Sarin D. Sun A. Thornton W.E.G. Müller (1987) ArticleTitleInhibition of replication of etiologic agent of AIDS by avarol and avarone. J Natl Cancer Inst 78 663–666 Occurrence Handle1:CAS:528:DyaL2sXktVSgsb8%3D Occurrence Handle2435942

    CAS  PubMed  Google Scholar 

  39. A.S. Sarma T. Daum W.E.G. Müller (1993) Secondary Metabolites from Marine Sponges—Akademie gemeinnütziger Wissenschaften zu Erfurt. Ullstein-Mosby Verlag Berlin, Germany

    Google Scholar 

  40. H.C. Schröder M. Bégin R. Klöcking E. Matthes A.S. Sarma M. Gasic W.E.G. Müller (1991) ArticleTitleAvarol restores the altered prostaglandin and leukotriene metabolism in monocytes infected with human immunodeficiency virus type 1. Virus Res 21 213–223 Occurrence Handle10.1016/0168-1702(91)90034-S Occurrence Handle1662847

    Article  PubMed  Google Scholar 

  41. H.C. Schröder A. Krasko R. Batel A. Skorokhod S. Pahler M. Kruse I.M. Müller W.E.G. Müller (2000) ArticleTitleStimulation of protein (collagen) synthesis in sponge cells by a cardiac myotrophin-related molecule from Suberites domuncula. FASEB J 14 2022–2031 Occurrence Handle11023986

    PubMed  Google Scholar 

  42. J. Schütze A. Skorokhod I.M. Müller W.E.G. Müller (2001) ArticleTitleMolecular evolution of metazoan extracellular matrix: cloning and expression of structural proteins from the demosponges Suberites domuncula and Geodia cydonium. J Mol Evol 53 402–415 Occurrence Handle11675600

    PubMed  Google Scholar 

  43. J. Seack M. Kruse I.M. Müller W.E.G. Müller (1999) ArticleTitlePromoter and exon-intron structure of the protein kinase C gene from the marine sponge Geodia cydonium: evolutionary considerations and promoter activity. Biochim Biophys Acta 1444 241–253 Occurrence Handle1:CAS:528:DyaK1MXhs1Ojur8%3D Occurrence Handle10023072

    CAS  PubMed  Google Scholar 

  44. G. Seibert W. Raether N. Dogovic M.J. Gasic R.K. Zahn W.E.G. Müller (1985) ArticleTitleAntibacterial and antifungal activity of avarone and avarol. Baktl Zbl Hyg A 260 379–386 Occurrence Handle1:CAS:528:DyaL28XosFeiug%3D%3D

    CAS  Google Scholar 

  45. N.L. Thakur U. Hentschel A. Krasko C.T. Pabel A.C. Anil W.E.G. Müller (2003) ArticleTitleAntibacterial activity of the sponge Suberites domuncula and its primmorphs: potential basis for the defense. Acquatic Microbial Ecol 31 77–83

    Google Scholar 

  46. N.S. Webster R.T. Hill (2001) ArticleTitleThe culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an α-Proteobacterium. Mar Biol 138 843–851 Occurrence Handle1:CAS:528:DC%2BD3MXjvFKnsrw%3D

    CAS  Google Scholar 

  47. N.S. Webster K.J. Wilson L.L. Blackall R.T. Hill (2001) ArticleTitlePhylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67 434–444 Occurrence Handle1:CAS:528:DC%2BD3MXjtVWlug%3D%3D Occurrence Handle11133476

    CAS  PubMed  Google Scholar 

  48. M. Wiens B. Diehl-Seifert W.E.G. Müller (2001) ArticleTitleSponge Bcl-2 homologous protein (BHP2-GC) confers distinct stress resistance to human HEK-293 cells. Cell Death Different 8 887–898 Occurrence Handle10.1038/sj.cdd.4400906 Occurrence Handle1:CAS:528:DC%2BD3MXntVKnurk%3D

    Article  CAS  Google Scholar 

  49. M. Wiens B. Luckas F. Brümmer M.S.A. Ammar R. Steffan B. Diehl-Seifert H.C. Schröder W.E.G. Müller R. Batel (2003) ArticleTitleOkadaic acid: a potential defense molecule for the sponge Suberites domuncula. Marine Biol 142 213–223 Occurrence Handle1:CAS:528:DC%2BD3sXpslSqtg%3D%3D

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Bundesministerium für Bildung und Forschung (project: Center of Excellence BIOTEC-MARIN), the Deutsche Forschungsgemeinschaft (Mü 348/14-1), and the European Commission (“SPONGE”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner E. G. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, W.E., Grebenjuk, V.A., Le Pennec, G. et al. Sustainable Production of Bioactive Compounds by Sponges—Cell Culture and Gene Cluster Approach: A Review . Mar. Biotechnol. 6, 105–117 (2004). https://doi.org/10.1007/s10126-002-0098-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-002-0098-6

Keywords

Navigation